Finite Automata & 97

The €-NFA that accepts strings of zero or more a’s, zero or more b’s and zero or more €’s
can be represented as shown below:

It is given that zero or more a’s should be followed by zero or more b’s followed by zero
or more ¢’s and the corresponding €-NFA is shown below:

2.17 foni'ersion from &-NFA to DFA

We ha ¢ seen in the previous section that an NFA can be converted into DFA using '
subset ¢onstruction. On similar lines, it is possible to convert an e-NFA to DFA and the
procedyre is shown below: ’

- Let M = (Qg, X, 8k, qoe, Fg) be an e-NFA where Qg is set of finite states, Y is set of

input alphabets (from which a string can be formed), O is transition from Q x (U eglto
29, qog is the start state and Fg is the set of final or accepting states. The equivalent DFA

Mp = (Qp, 2., Op, qop, Fp)

can be i;btained as shown below:

Stepl o : _
q 5 = e-CLOSURE(qoE)- This indicates that the start state of DFA can be obtained
thaking the e-CLOSURE of the start state of €-NFA.

Step2:) ‘

l'éstate of DFA represented by [p1, p2,----Pxl € Qb can be obtained from &-NFA
ing the following transition: : :

&X[pl, P2----Pxl, @) = e-CLOSURE(dn(p1,a) L dn(p2,a) U vor...ON(PK,2))

98 HFinite Automata and Formal Languages

= O €- CLOSUR]-:c(&u(p.,a)) for each aey.

i=1

Step 3:
[P1, P2s....px] is a final state in DFA

Example 2.29: Convert‘the following NFA to its equivalent DFA.

The start state of DFA i.e., qop = e-CLOSURE(0) = {0}

Consider the state [A]:
’ When input is a: -
(A, a) = &-CLOSURE (dn(A, a))
' = g-CLOSURE (8x(0, a))
= {1}
When input is b: -
" 8(A,b) . = ¢€-CLOSURE (8n(A, b))
‘ = ¢&-CLOSURE (SN(O b))
= {¢}
Consider the state [B]:
When input is a:
4(B, a) = &CLOSURE (6n(B, a))
' = &-CLOSURE(6n(1,2))
= {4}
“When input is b: :
(B, b) e-CLOSURE (6x(B, b))

- &-CLOSURE(Sx(1, b))
e-CLOSURE ({2})
{2,3,4,69} R ©

If [p1, p2,-...px] € Qp and if any of the state p; € Fg (set of acceptmg states), then

(A)

®

Finite Automata & 99

This:is because, in state 2, due to &-transitions (or without giving any input) there can be

transition to states 2,3,4,6,9 also. So, all these states are reachable from state 2. Therefore,

Colisider the state [C]:
When input is a:
¥(C, a)

wuamnunn

Therefore,

When input is b:
8(C,b)

This is because, from state

Consider the state [D]:
~ When input is a:

0D, a)

When input is b:
d(D, b)

LU LI U I |

8(B,b)= {2,34,69}=C

£-CLOSURE (8x(C, a))
e-CLOSURE(Sx({2,3.4,6,9}, a))
e-CLOSURE {5}
{5,8,9,3,4,6)

{3,4,5,6, 8,9} | (ascending order) (D)

3(C,a)={3,4,5,6,8,9}=D

€-CLOSURE (6n(C, b))

e-CLOSURE(Sx({2, 3, 4, 6,9}, b)

e-CLOSURE ({7}) |
{7,8,9,3,4,6}

This is because, in state 5 due to e-transitions, the states reachable are {5,8,9,3,4,6)}.

{3,4,6,7, 8, 9}(ascending order) - (E)

7 the states that are reachable without any input (i.e., &-
transition) are {7, 8, 9, 3, 4, 6}. Therefore, :

d(C,b)= {3,4,6,7,8,9} =E

£-CLOSURE(S(D, a))
€-CLOSURE (6n({3.4,5.6,8,9}, a))
e-CLOSURE ({5})

{5,8,9, 3,4, 6} :
{3,4,5,6, 8,9} (ascending
order) (D)

- e-CLOSURE((D, b))
€-CLOSURE (5x({3,4,5,6,8,9}, b))
e-CLOSURE ({7})

{7,8,9, 3,4, 6}

{3,4,6,7,8,9} (ascending order) (E)

100 EFinite Automata and Formal Languages

Consider the state [E]:
When input is a: o
O(E, a) = ¢-CLOSURE(S(E, a))
= e-CLOSURE (n({3.4,6,7.8,9}, a))
= ¢&CLOSURE ({5})
= {5,8,9,3,4,6}
= {3,4,5,6, 8, 9}(ascending order)
D) '
When input is b: :
O(E, b) €-CLOSUREC(S(E, b))

e-CLOSURE (dn({3,4,6,7,8,9}, b))
¢-CLOSURE ({7})
{7,8,9,3,4,6}

{3,4,6,7, 8, 9}(ascending order)
(E) :

Since there are no new states, we can stop at this point and the transition table for the
DFA is shown in table 2.16. _ - '

-3 &

o

o] K

o|o|o|
mim|mO

8

Table 2.16 Transitional table

The states C,D and E are final states, since 9 (final state of NFA) is present in C, D and E.
The final transition diagram of DFA is shown in figure 2.37.

Finite Automata = 101

Example 2.30: Convert the following NFA to DFA

a . b C

bbb
@@“

The state qg is the start of &-NFA and so the start state of DFA is e-CLOSURE (qp) i.e.,
e-CLOSURE (qo) = {qo, a q2} (A)

~

Now, we find the transitions from the state {qo, q{, gz} on X ={a,b,c}.

Consider the state [qq, q1, q2]:

- Oninputa:
8({qo. q1, g2}, a) = -CLOSURE ({qo})
= {qo, 1, q2} | ’ (A)
On input b: |
({90, q1, g2}, b) = &-CLOSURE ({ql})
={q1, g2} - (B)
On input c:
8({qo, di, g2}, ¢) = &~ CLOSURE ({QZ})
. =q ©

The new states reachable from {90, q1, q2} are {q, qz} and {qz} The transitions from
these are shown below:

Consider the state [q;, ip]:

On input a:
6({q1, 92},) =
On input b:
3({q1, q2},b) =¢&-CLOSURE ({q:})
= {QI,qZ} (B)
On inputc '
8({q1, q2},) = ¢- CLOSURE({CIz})

=q - (©)
Tt'transitions from the state q, aré shown below: |

nsider the state [q;]: *
On input a:

d(qo, a)= ¢

102 EFinite Automata and Formal Languages

On input b: o » N
5qi,b)=¢ : '
On input c: ’
8((.]2, c)= S-CLOSURE,(qz)
—q R ©
The transition table along with transition diagram is shown below: -

“— X >

a b c : i

(90,941,921)| [qo, q1, q2] [QI;qZ] (q:]

¢ 0 fq2]

S
Q ‘ o |lana) |lal
a

where A =[qo,q1,q2], B = [q1,q2] and C = [qo]

Example 2.31: Obtain an NFA with g-transitions (e-NFA) to accept decimal numbers an
then obtain the equivalent DFA. .

The

Finité Automata. 103

Note A decimal number has

‘1. an optional + or — sign followed by a .’ Followed by string of dlglts

or

2. an optional + or — sign followed by a strmg of digits followed by a ‘.’ and in tum
followed by string of digits

The &-NFA is shown in figure 2.39.

Flg 2.39 e-NFA to accept decimal number

fe the machine M = (Q ., 8, qo, F) where

Q {q0’ Qh 42, 93, 94, QS}
X={+-.0,1,2,...9}

Qo is the start state =~ °

F={ gs } is the final state

d is shown using the transition table 2.18.

DFA for the above machine can be obtained by modifying the subset construction for
e-transition. The start state of DFA is the s-CLOUSRE of start state of e-NFA.
i.e., qop = E-CLOSURE(qo) = {qo.q1} . (A)
< z —>
o | € + - . 10,1,...9
T Q [|q Q ¢ 1 ¢
Qlo ¢ ¢ 19 [
@9 |0) ¢ |
B 1% | ¢ ¢ ¢ |a
. 9410 10 10 |G |Qqs
Yiga|o o o o 1 ¢

104 EFinite Automata and Formal Language;s

o Consider the state [A]:

When input is +:

§(A, 1) = g-CLOSURE (8n(A, 1))
= g-CLOSURE (8n({qo.q1}, %)
= ¢-CLOSURE (q1)
= {a} ®)
When input is. : .
&A,.) = eCLOSURE (3x(A,.))
- _ &CLOSURE (3n({qoai}.+))
_ &CLOSURE (q2)
{q2} ‘ ©
When input is 0,1,2,...9 ' ' ’
A, = ¢-CLOSURE (8n(A, {0,1,...9})) |
{0,1,...9}) = g-CLOSURE (8n({qo.q1}, {01,...9})).
= gCLOSURE (q4) .
= {as} D)
Consider the state [B]: |
When input is *:
3(B, 1) = gCLOSURE (3n(B, 3)
. = ¢-CLOSURE (3n(q1, 1))
= ¢-CLOSURE (¢)
= ¢
When input is. , :
3B, .) = ¢-CLOSURE (3x(B,.))
~ &-CLOSURE (8n(qi, -))
_ &CLOSURE(q)) |
. _ a2} (©
When input is 0,1,2,...9 o ’
8B, ¢-CLOSURE (3x(B, {0,1,...9})
{0,1,...9}) ¢-CLOSURE (8x(qs, {0.1,...9}))

e-CLOSURE (qs) | |
(g4} D)

nuuun

Finite Automata & 105
Consider the state [C]:
When input is +: ;
O(C, 1) = ¢&-CLOSURE (On(C,)
= ¢g-CLOSURE (n(q2, 1))
= ¢-CLOSURE (¢)
=0
When input is. o
8(C,.) = €&-CLOSURE (on(C,.))
~ &-CLOSURE (8x(q2, -))
_ &CLOSURE (¢)
- ¢ o :
When inputis 0,1,2,...9 '
3(C, = &-CLOSURE (3x(C, {0.1,...9}))
{0,1,...9}) = ¢&-CLOSURE (dn(q2, {0,1,...9}))
= &-CLOSURE (q3)
= {a3 gs}
E)
Cqﬁsider the state [D]:
. When input is +: :
0D,) = ¢-CLOSURE (8nx(D, %))
= &-CLOSURE (0n(qa, 1))
= eCLOSURE (¢)
=0
When input is. :
- 3D,.) = &-CLOSURE (3x(D, .))
~ &-CLOSURE (3x(qs, -))
_ &CLOSURE (g3)
- {43, qs}
_ (E)
When input is 0,1,2,...9
- 3D, = ¢e-CLOSURE (dn(D, {0,1,...9}))
{0,1,...9}) = g-CLOSURE (dn(q4, {0,1,:..9}))
B = €-CLOSURE (qq)
| = a4} . (D)

106 SFinite Automata and Formal Languages

Consider the state [E]:
When input is &
OE, v €-CLOSURE (On(E, %))
' ¢-CLOSURE (8N({‘]3, qS}_’ :t)))
e-CLOSURE (¢) -

¢

When input is . :
€-CLOSURE (On(E, .))

3(E,.) =
: _ &CLOSURE (3n({93, 95}, +))
_ &CLOSURE (¢)
Z b
When input is 0,1,2,...9 |

. €-CLOSURE (On(E; {0,1,...9}))

S(E, =
{0,1,...9}) = &-CLOSURE (3n({g3, g5}, {0,1,...9}))
= ¢&-CLOSURE (q3)
= {43, qs}
E)
The transition table along with transition diagram is shown below:
< Z >
) + | - . 10,1,...9
A|B B C |D
| Bl¢o [o c |D
Q[Cl¢ |o |o |E
l,' Di¢ |o |E D
*Elo o ¢ |E

Q={A,B,C,D,E}

Z= { +,', oy 0, l, 2,..
A is the start state

Injthis DFA M = (Q, X, 3, qo, F) where

.9}

F={E } is the final state
d is shown sing the transition table 2.19.

: Since E = {qs, qs} has a final state of NFA, E is the final state in DFA. The

Finite Automata & 107

N

cﬁsponding DFA is shown using the transition diagram in figure 2.40.
2. {8 Difference between DFA, NFA and e-NFA
Nq>w let us see “What is the difference between DFA, NFA and &-NFA?” Strictly

DFA

NFA

spbakmg the difference between DFA and NFA lies only in the definition of . Using this
difference some more points can be derived and can be wrltten as shown: :

e-NFA

[

he DFA is a 5-tuple or
mtuple M=(Q,%,8,q,
where

) is set of finite states
is set of input alphabets
Q x2t0Q

q is the start state
Q is set of final states

An NFA is a 5-tuple .

M= (Q Z. 35, go, F) where

| Q is set of finite states

2 is set of input alphabets
8 : Q x X to subsets of 22
qo is the start state

F c Q is set of final states

1 of 22

An e-NFA is a 5-tuple
M=(Q,%,8,q0,F)

where

Q is set of finite states
2 is set of input
alphabets

6 : Q x X Ue) to subsets

o 1s the start state
F c Qs set of final
states

a string w is accepted by
FA from state g, there will
tj:" exactly one path labeled
starting at q. Therefore, to

etermine if a string is
accepted, it is sufficient to
check for this one path.-
Following this path, if the
machine is in final state, we
say that the string w is
accepted. Otherwise, the.
string is rejected.

I

o=

If a string w is accepted by
an NFA from state g, there
may be many paths labeled
w. Therefore, to determine
if a stririg is accepted, it is
necessary to check all these
paths to see whether one or
more terminate at final
state. Following these
paths, if we reach a final

| state, the string is accepted

else the string is rejected.

For an €-NFA, there may |
be many paths labeled w
along with € and all must
be checked to see

whether one or more
terminate at final state. If
final state is reached, the
given string w is accepted
by the machine else it is
rejected by the machine.

108 MFinite Automata and Formal Languages

There can be zero or one There can be zero, one or There can be zero, one nr
transition from a state on an | more transitions from a more transitions from a
input symbol state on an input symbol state with or without
. : giving any input
Difficult to construct Easy to construct Easy to construct using
' , regular expressions

Figure 2.1 - Figure 2.34 _ Figure 2.36

Example 2.32: Obtain a NFA's to recognize the strings abc, abd and aacd assuming !

Y ={a, b,c,d)} , H

The machine to accept the string abc is shown below:

The machine to accept the string aacd.is shown below:

)@ ‘aa@a’@c)@.da@

But, all these strings can be preceded by s’trin'gs of a’s, b’s, ¢’s and d’s and observe tiaat
the first symbol in each of these machines is a. So, the complete NFA to accept’ lfhe
strings abc, abd and aacd can be written as shown below: ‘

i

Finite Automata = 109
Exercises:
. 1. What is an NFA? Explain with example -~
2. What is the need for an NFA?
3. What is the difference DFA and NFA?
4. Givea genéral procedure to convert an NFA to DFA.
-5. Convert the following NFAs into an equivalent DFA. b e
6. Define distinguishable and non-distinguishable states
" 7. Give the general procedure to minimize the states of DFA
8. Construct a DFA which accepts strings of 0’s and 1’s where the value of each
string is represented as a binary number. Only the strings representing zero
modulo five should be accepted. For example, 0000,0101,1010,1111 etc. should
be accepted. After constructing the DFA, obtain the minimum DFA.
'9. Obtain a DFA to accept string of 0’s and 1’s having three consecutive zeros.
Ans: 8((10,0) = QI, a(qo’l) = qo; 8((]1,0) = QZ, S(qul) = q0»
3(q2,0) = q3, 8(q2,1) =-qo, 8(q3,0) = q3, 8(q3,1) = q3
qo is the start state and q3 is the final state.
" 12.Draw a DFA which accepts strings of 0’s and 1’s ending with 1 and does not

contain a substring 00.

110 HFinite Automata and Formal Languages

Ans: 8(qo.0) = qi, 8(qo,1) = q2, 8(q1,0) = g3, 8(q1,1) = qa,
8(q2,0) = qi, 8(q2.1) = q2, 8(g3.0) = q3, 8(q3,1) = q3 :
qo is the start state and q; is the final state. L
qs is the trap state or dead state
13. Draw a DFA to accept strings of 0’s and 1’s ending with the string 10.
Ans: 8(q0,0) = go, 8(qo,1) = q1, 8(q1,0) = q», 8(q1,1) = qu,
3(q2,0) = qo, 8(qz,l) = q, where q; is the final state.

14. Draw a DFA to accept the language L = { (00)*(11)*}
Ans: 8(qo,0) = qi, 8(qo,1) = g2, 8(q1,0) = qo, 8(q1,1) = qa, 8(q2,0) = qa, S(Qz,l) =

QS, S(Q3,O) q4v 8((]3,1) q29 8(‘]4,0) q47 6((]4,1) q4
qo is the start state, qo and q; are the final states, g4 is the trap state or dﬂad

state

15. Draw an NFA to accept the string of a’s and b’s such that it can accept either the
string consisting of one a followed by any number of a’s or one b followed by any
number of b’s (i.e., aa* | bb*) and obtain the corresponding DFA

Regular Expressions and Languages

What we will know after (gading this chapter?

Definition of Regular expressions and method of representing
Meaning of various regular expressions '

To obtain regular expressions for given languages

Relation between FA and Regular Expression

To obtain NFA from regular expression along with theorem

Solution to obtain NFAs for various types of regular expressions
To obtain regular expressions from various types of FAs
Applications of Regular Expressions

Chomsky hierarchy- definition of type-0 (un-restricted grammar),
type-1 (context sensitive grammar), type-2 (Context free grammar)
type-3 (Regular grammar/ linear grammar)

To obtain FA from regular grammar or right- lmear grammar along
with the proof

Solution to obtain FA from varieties of regular grammars

To obtain regular grammar from FA along with various types of
problems and solutions

To obtain left linear grammar from FA along with various types of -
problems and solutions

Solution to more than 35 problems of various nature

VVVVVVVVY

vV V VYV VvV

In chapter 2, we saw that any language that can be accepted by a finite automaton is
called regular language i.e., we can construct either DFA or NFA to recognize the regular
l;;:guage. This chapter covers regular expressions which is another way to express the
regular languages. The way to obtain equivalent NFAs for the regular expressions is also.
dlscussed It also covers regular grammar from which a regular language can be obtained
arid method of obtaining finite automaton from the grammar.

i

112 E Regular Expressions and languages

3.1 Regular Expression

A regular language can be described using regular expressions in the form of notations
_consisting of the symbols such as alphabets in ¥, the operators such as *.’, ‘+’ and ¥
The three basic operations used to obtain a regular expression are union, closure
operation and concatenation.

The operator + is used for union, the symbol * is used for closure operation a:nd
the symbol “.” is used for concatenation. If the regular expression is too complex one gan
use the braces ‘(“ and ‘)’ conveniently to understand the regular expressions. Now, letius
see “What is a regular expression?” A regular express1on can be formally defined as
follows. :

Definition: A regular expression is recursively defined as follows.

1. ¢ is a regular expression denoting an empty language.
2. e-(epsilon) is a regular expression indicates the language containing an |
empty string.
3. aisaregular express1on which indicates the language containing only {a}
4. If R is a regular expression denoting the language Lg and S is a regular -
expression denoting the language Ls, then : ;
a. R+S is a regular expression corresponding to the language Lz U
Ls.
b. RSisa regu_lar expression corresponding to the language Lg.Ls.
c. R*is aregular expression corresponding to the language Ly .
5. The expressions obtained by applying any of the rules from 1 to 4 are
regular expressions. ’

Note: The order of evaluation of the regular expression is determined by the parcnthems
as is used in arithmetic expressions and the priority associated with other operators.
Closure operator (denoted by * also called Kleen closure) is having the highest pnonﬁy,
then concatenatlon and finally the union operator.

The table 3.1 shows some examples of regular expressions and the language
corresponding to these regular expressions.

Regular , ' . Meaning
expressions ‘ '
(a+b)* Set of strings of a’s and b’s of any length including the NULL string.
(a+b)*abb Set of strings of a’s and b’s ending with the string abb
ab(a+b)* Set of strings of a’s and b’s starting with the string ab.
(atb)*aa(a+b)* | Set of strings of a’s and b’s having a sub string aa. : _
a*b*c* Set of string consisting of any number of a’s(may be empty string also)

Finite Automata and Formal Languages & 113

followed by any number of b’s(may include empty string) followed by
any number of c¢’s(may include empty string). ,

alb'c’ Set of string consisting of at least one ‘a’ followed by string
consisting of at least one ‘b’ followed by string consisting of at least
one ‘c’. .

aa*bb*cc* Set of strings consisting of at least one ‘a’ followed by string

- , cons1stmg of at least one ‘b’ followed by string cons1stmg of at least

one ‘c’.

(a+b)* (a + bb) | Set of strings of a’s and b’s ending w1th either a or bb

(aa)*(bb)*b Set of strings consisting of even number of a’s followed by odd

: number of b’s
(0+1)*000 Set of strings of 0’s and 1’s ending with three consecutive zeros(or
a ending with 000)

(11)* Set of strings consisting of even number of I’s

o1*+1 The language represented is the string 1 plus the string con51stmg of
a zero followed by any number of 1’s possibly including none.

O1n*+1 The language consists of a string 1 or strings of (01)’s that repeat

f Zero or more times.

o(1* + 1) | Set of strings consisting of a zero followed by any number of 1’s

(1+€)(00*1)*0* | Strings of 0’s and 1’s without any consecutive 1’s

(0+10)*1* - Strings of 0’s and 1’s endmg with any number of 1’s (possibly
none)

Table 3.1 Meaning of regular expressions

Example 3.1: Obtain a regular expression to accept a Ianguage consnstmg of strings of a ’s
anﬂ b’s with alternate a’s and b’s :
th‘e altemate a’s and b’s can be obtained by “concatenating the string ab zero or more
times” which can be represented by the regular expression
| (ab)*
and addmg an optional b to the front and adding an optional a at the end as shown
beIOW
| (e +b) (ab)* (e +a)

Th’us the complete expression is given by
' (€ +b) (ab)* (¢ + a)

Nate: The expression can also be obtained as shown below:

114 B Regular Expressions and languages

The alternate a’s and b’s can be generated using one of the following ways:
1. (ab)* ;
2. b(ab)* ' ’ : |
3. (ba)* _ o , |
4. a(ba)* ' - |
* o
So, the regular expression to generate alternate a’s and b’s can be obtained by taking the
union of all four types of regular expressions as shown below: |
(ab)* + b(ab)* + (ba)* + a(ba)*
Example 3.2: Obtain a regular expression to accept a Ianguage conslstmg of strings ot‘l
and 1 s with at most one pair of consecutive 0's . _,_;

Itis clear from the statement that the string consisting of at most one pa1r of consecuiive
0’s may lb
1. begin with combination of any number of 1's and 01’s represented
(1+01)*
* 2. end with any number of 1’s represented by 1* ;
So, the complete regular expression which consists of strings 0’s and 1’s with at most one
pair of consecutive 0’s is given by :
~(1+01)*00 1*

Example 3.3: Obtain a regular expression to accept a language containing at least one a
and at least one b where 3 = {a, b, ¢} :
Stringsof a’s b’s and ¢’s can be generated using the regular expression

(a+b+c)*

But this string should have atleast one ‘a’ and at least one ‘b’. There are two cases to be
considered:
1. first ‘a’ preceding ‘b’ which can be represented using
c*a(a+c)*b

2. first ‘b’ preceding ‘a’ which can be represented using -
c*b(b+c)*a

The regnlar expression (a + b + ¢)* can be preceded by one of the regular expressigns
considered in the two cases just discucced. So, the final regular expression is
c*a(a+c)*b(a+b+c)* + c*b(b+c)*a(a+b+c)*

Finite Automata and Formal Languages & 115

his expression can also be written as shown below:
[cf“a(a+c)*b + c’f‘b(b+c)*a] (atb+c)*

=

l‘]'l

xXample 3.4: Obtain a regular expressnon to accept a Ianguage consisting of stnngs ofa’s
_and b’s of even length.

tring of a’s and b’s of even length can be obtained_by the combination of the strings aa,
ab, ba and bb. The language may even consist of an empty string denoted by €. So, the

T gular expression can be of the form
(aa + ab + ba + bb)*

'Jﬁe "f closure includes the empty string.
i

ote The language corresponding to the regular expression is denoted by
o I ' L(R) {(aa + ab + ba + bb)" | n 2 0}

Example 3.5: Obtain a regular expression to accept a language consisting of strings of a’s
and b’s of odd length.

String of a’s and b’s of odd length can be obtained by the combination of the strings aa,
b ba and bb followed by either a or b. So, the regular expression can be of the form
(aa+ab+ ba + bb)* (a+b)

tring of a’s and b’s of odd length can also be obtained by the combination of the strings
ab, ba and bb preceded by either a or b. So, the regular expression can also be
represented as

(a+b) (aa + ab + ba + bb)*

ote: Even though. these two expression are seems-to be dlfferent the language
jiresponding to those two expression is same. So, a variety of regular expressions can
obtained for a language and all are equ1valent :

mple 3.6: Obtain a regular expression such that L(R) = {w | w € {0, 1}* with at least
three consecutive 0’s :

An arbitrary string consisting of 0’s and 1’s can be represented by the regular

cxpressnon
| O+1)*

116 M Regular Expressions and languages

This arbitrary string can precede three consecutive zeros and can follow three consecutiye
zeros. So, the regular expression can be written as
(0+1)* 000 (0+1)*

Note: The languagé corresponding to the regular expression can be written as
' L(R) = { (0+1)"000(0+1)" |m>0andn>0}

Exainple 3.7: Obtain a regular expression to accept strings of a’s and b’s ending with p’
and has no substring aa

Note: The statement “strings of a’s and b’s ending with ‘b’ and has no substring aa” can
be restated as “string made up of either b or ab”. Note that if we state something like this,
the substring aa will never occur in the string and the string ends with ‘b’. So, the regular
expression can be of the form S - :
' (b + ab)* |

But, because of * closure, even null string is also included. But, the string should end
with ‘b’. So, instead of * closure, we can use positive closure ‘+’. So, the regular
expression to accepe strings of a’s and b’s ending with ‘b’ and has no substring aa can Qe
written as _ ;

(b+ab)*

The above regular expression can also be written as
(b+ab) (b+ab)*

Note: The language corresponding to the regular expression cari_bc written as
‘ LR)={(b+ab)"|n>1}

Example 3.8: Obtain a regular expression to accept strings of 0's and 1’s having no two
consecutive zeros. . .

The first observation from the statement is that whenever a 0 occurs it should be followeh
by 1. But, there is no restriction on the number of 1’s. So, it is a string consisting of an;
combinations of 1’s and 01’s. So, the partial regular expression for this can be of the fon‘ﬁ
(1+01)* . ﬁ
No doubt that the above expression is correct. But, suppose the string ends with a 0. Wh:ajit
to do? For this, the string obtained from above regular expression may end with 0 or ma
end with € (i.e., may not end with 0). So, the above regular expression can be written as ; ’

(1+01)"(0+¢) |

;[- ~ . Finite Automata and Formal Languages 2117
t A , ,

E}zample 3.9: Obtain a regular expression to accept a language consisting of 0’s and 1’s
such that every pair of adjacent 0’s appears before any pair of adjacent 1’s.

Siﬁngs of 0’s and 1’s having no two consecutive zeroes is given by

| (1+01)° (0 +¢)

Strings of 0’s and 1’s having no two consecutive ones is given by
(0+10)°(1 +¢)

The string having no two consecutive ones followed by string having no two consecutive
zgroes is obtained by concatenating the first with the second regular expression as shown
below: :

©+10)" (1 +) (1 +01)" (0 +¢)

=]

In the above regular expression, it is clear that every pair of adjacent 0’s appeafs before
any pair of adjacent 1’s. . _ .

Example 3.10: Obtain a regular expression to accept strings of a’s and b’s of length < 10

Thé regular expression for this can be written as
| €E+a+b+aa+ab+ba+bb+....... +bbbbbbbbba + bbbbbbbbbb

i

.

1
Bqt, using In a regular expression is not recommended and so we can write the
abpve expression as

. ’ (E+a+b)?°

Exhple 3.11: Obtain a regular expression to accept string of a’s and b’s starting with ‘a’
and ending with ‘b’. .

Stviings of a’s and b’s of arbitrary length can be written as
(a+b)*
But, the string should start with ‘a’ and end with ‘b’. So, the regular expression can
be written as
E

; a(a+b)*b

Example 3.12:" Obtain a regular expression to accept string of a’s and b’s whose tenth
symbol from the right end is a. - . . o

Since we are interested only from the right end we can have a regular expression as
shown below: .

118 E Regular Expressions and languages

a(a+b)(a+b)(a+b)(a+b)(a'+.b)(a+e)(a+b)(a+b)(a+b)

It is clear from the above expression that the string has a strings of a’s and b’s whqse
tenth symbol from the right end is a. But, the string can be preceded by any number of ¢ a s
and b’s. So, the regular expression can be written as

(a+b)*a(a+b)(a+Db) (a+b)(a+b)(a+b)(a+b) (a+b)(a+b) (a+b)

It is clear from this expression that all strings must be of length 10 or more. Here we
need to track the last 10 characters. i
Example 3. 13: Obtain a regular expression to accept the words with two or more letters *ut
beginning and ending with the same letter where X = {a, b}

The string consisting of a’s and b’s can be denoted by the regular expression

(a+b)* ‘ 1
Since, the string should start and end with the same letter, the above regular expressjon
can be ‘enclosed between ‘a’ and ‘a’ or ‘b’ and ‘b’. The regular expression for the siizne
can be denoted by |
a(a+b)* a+b(a+b)*b

This regular expression indicates that the string may start and end with either ‘a’ or '
‘b?

Example 3.14: Obtain a regular expression to accept strings of a’s and b’s whose Iength is
either even or multiples of 3 or both. ' {

The regular expression whose length is even can be obtained usiné
((a+b)(a+b))*

and the regular expression whose length is multiples of 3 can be obtained using
((a+b)(@a+b)(a+b))*

Thus, the regular expression whose length is either even or multiples of 3 or both i
given by |
((@a+b)(a+b))*+((a+b)(a+b)(a+b))*

Example 3.15: Obtaln a regular expression to accept strings of a’s and b’s such that third
symbol from the right is a and fourth symbol from the right is b :

| Finite Automata and Formal Languages 119
i

We are interested only in the third and fourth symbol so that third symbol from the right

end is @ and fourth symbol from the right end is b and the regular expression for this is

givenby

~ba(a+b)(a+ b)

But, this substring can be preceded by any combinations of a’s and b’s which is given by
the regular expression - -
(a+b)*

" By concatenating the above two regular expressions, we can write the regular expression
ta accept the given language as
(a+b)*ba(a+b)(a+b)

" Example 3.16: Obtain a regular expression to accept strmgs of a’s and b’s such that every
block of four consecutive symbols contains at least two a’s. .
|
* This clearly indicates that always we are interested in block of four consecutive symbols
and see that at least two a’s are present. Let A, B, C, D are the symbols in a block of four

cqnsecutlve symbol and minimum two symbols out of A, B, C and D should have two a’s
as shown below:

I
AB (Here A and B are a’s where as C and D € {a,b})canbe represented as

= aa (a +b) (a+b) :
AC (Here, A and C are a’s where as B and D e {a,b})canbe represented as

g a(a +b) a (a+b)

Ab (Here, A and D are a’s where as Band C e {a b})can be represented as
| a(a+b) (a+b)a

: BC (Here,Band C are a’s where asAandD e {a, b}) can be represented as
i ' (a +b)aa (a+b) :
t
BlD (Here,BandD are a’s where as Aand C € {a, b}) can be represented as
5 - (atb)a(atb)a
ClD (Here C and D are a’s where as A and B € {a b}) can be represented as
(a +b) (a+b)aa

Note: Since it is specified that at least two a’s are present, it is not possible to have star
operator * (which indicates zero or more symbols) since it encompasses even the empty

120 & Regular Expr;:ssions and languages

string. So, we have to use the + operator (which: 1nd1cates one or more symbols) and can
be expressed as shown below: ‘ ‘ .

[aa(a +b)(a+b) + a(a +b)a(a+b) + a(a +b (a+b)a + (a+b)aa(a+b) + (a+b)a (a+b)a1
(a+b)(a+b)aa] ' :

3.2 Relatlon between FA and Regular Expression , |

This section shows the relation between DFA; NFA, &-NFA and regular expression apd
how to obtain an &-NFA from the regular expression. Once we have an €-NFA, we can
easily construct a DFA and we know that any language accepted by a DFA is regu?g

Since a DFA is obtained from an €-NFA or from NFA, we can say that any langudge
accepted by an &-NFA or NFA is also regular. Since an &-NFA is obtained from a
regular expression, we can say that a regular language in fact can be denoted by a regu’ar
expression. So, given a regular expression we can obtain an €-NFA, from &-NFA.ye
have already seen the way to obtain a DFA (section 2.16). In fact, regular expression,| €-
NFA, NFA and DFA all represent the same and but notations are different. The diagram
showing the different notations and the plan showmg the relations is shown in figure 3.1.

Figure 3.1 Various notaﬁons to represent FA and their relations

Let us sée how to obtain an €-NFA from the regular expression and later to obtain the
regular expression from a given FA.
3.3 ToObtain e-NFA from Regular Expression

Theorem: Let R be a regular expression. Then there exists a finite automaton M—(Q 2,
5 qo, F) which accepts L(R).

Finite Automata and Formal Languages =2 121

Proof: Hy definition, ¢, € and a are regular expressions. So, the corresponding machines
to recognize the language for the respective expressions are shown in figure 3.2.a, 3.2.b
and 3.2.¢ respectively. ' ‘

—® , @ —@0 —®0

(a) (b) (©)

Fig 3.2 &-NFAs to accept ¢, € and a

The schematic representation of a regular expression R to accept the language L(R) is
shown in figure 3.3. where q is the start state and f is the final state of machine M.

H
g . L(R)
|

Fig 3.3 Schematic representation of FA accepting L(R)

-

In the dfinition of a regular expression it is clear that if R and S are regular expression,
then R+S and R.S and R* are regular expressions which clearly uses three operators “+’,
< and *.”. Let us take each case separately and construct equivalent machine. .

Let M, = (Qi, X1, 81, qi, fi) be a machine which accepts the language LR
correqu‘m'ding to the regular expression R;. Let M, = (Qz, X2, 82, q2, f2) be a machine
which accepts the language L(R;) corresponding to the regular expression Ry. Then the
_various machines corresponding to the regular expressions Ry + Rz, R; . R; and R* are

shown b_elow:

Case 1! R = R, + R,. We can construct an NFA which acéepts, either L(R;) or L(R>)
which dan be represented as L(R; + Ry) as shown in figure 3.4. :

LR)

Fig. 3.4 To accept the language L(R1 + R2)

122 & Regﬁlar Expressions and languages

It is clear from figure 3.4 that the machine can either accept L(R;) or L(R;). Here, qo is
the start state of the combined machine and qs is the final state of combined machine M.
Case 2: R = R, . R,. We can construct an NFA which accepts L(R;) followed by LRy)
which can be represented as L(R; . Rz) as shown in figure 3.5.

L(R)) L(R-)
(@ M 60— M 1)
Fig. 3.5To accept the language L(R1 . R2)

It is clear from figure 3.5 that the machine after accepting L(R;) moves from state q; to
f;. Since there is a e-transition, without any input there will be a transition from state f; to
state q,. In state g, upon accepting L(R;), the machine moves to f; which is the final

_state. Thus, q; which is the start state of machine M, becomes the start state of the
combined machine M and f, which is the final state of machine M,, becomes the final
state of machine M and accepts the language L(Rl.Rz).

‘Case 3: R = (R;)". We can construct an NFA which accepts either L(R,)") as shown in
figure 3.6.

Fig. 3.6 To accept the language L(R1)’
It is clear from flgure 3.6 that the machine can either accept € or any number of L(R))s
thus accepting the language L(R;)". Here, qo is the start state qr is the final state.

Example 3.17: Obtaln an NFA which accepts strlngs of a’s and b’s startmg with the string
ab.

The regular expression corresponding to this language is ab(a+b)*.

Step 1: The machine to accept ‘a’ is shown below.

Finite Automata and Formal Languages & 123

Step 2: The machine to accept ‘b’ is shown below.
b 4
(O—0

Step 3 The machine to accept (a + b) is shown below.

Fig. 3.7 To accept the language L(ab(a+b)*)

124 & Reguiar Expressions and languages

Example 3.18: Obtain an NFA for the regular expression a* + b* + ¢*

The machine corresponding the regular expression a* can be written as

The machine correspondmg the regular expressnon b* can be written as

The machine corresponding the regular expressmn c* can be written as

Fig. 3.8 To accept the language L(a* + b* + c¥)

Finite Automata and Formal Langdages = 125
Examplé 3.19: Obtain an NFA for the regular expression (a+b)*aa(a+b)*

Step 1:{The machine to accept (a + b) and (a+b)* are shown below.

Step 3; The machine to accépt aa is shown below. -

Step 5 The machine to accept (a+b)*aa(a+b)* is shown in figure 3.9.

126 B Regular Expressions and languages

Fig. 3.9 NFA to accept (a+b) aa(a+h)’

34 ToObtain RE from FA(Kleene’s theorem)

In this section let us see how to obtain a regular expression from FA using Kleene’s
theorem.

Theorem: Let M = (Q, ¥, §, qi, F) be ank FA recognizing the language L. Then there
exists an equivalent regular expression R for the regular language L such that L = L(R).

Note The proof along with the procedure to obtain a regular expression from fmlte
automaton is shown below:

Proof: Let Q = {ql, q2,----qn} are the states of machine M where 7 is the number of states.
The path from state to i to state j through an 1ntermed1ate state whose number is not
greater than k is given by the regular expression RlJ as shown below: :
R;* = {w e Z"| wis label (path) from i to state j

that goes through an intermediate state

whose number is not greater than k}
where i > k and j > k. The string w can be written as

W =Xy

where |x| >0 and |y| > 0 and 4 G, x)=kand Sky)=j

Basis: k = 0. This indicates that there is no intermediate state and the. path from stqte ito
state] is given by the followmg two conditions:

Finite Automata and Formal Languages & 127

1. There is a direct edge from state i to state j. This is possible when i # j. Here, a DFA
M with all input symbols a such that there is a transition from state i to state j is
considered with following cases: '

a. No input symbol and the corresponding regular expression is given by

| Ri”=¢

b. Exactly one input symbol a on which there is a transition from state i to state
to j and the corresponding regular expression is given by '
Rij(o) =a

c There are multiple inputs a;, az, a3...ax where there is a transition from each
~ symbol from state i to state to j and the corresponding regular expression is
given by
1 Rij(o) =a+ar+az+....+3a
s
2. Thbre is only one state such that i = j and there exists a path from i to itself on input
symbol a forming a self loop or a path of length O (i.e., if no loop path from state i to
st.a%ic i then there is a path of length 0) and is denoted by €. Thus the regular
_expressions corresponding to various cases for 1.a, 1.b and 1.c is given by
? Rij(o) = (b + €
Rij(o) =a+¢€
R =aj+ap+as+...+a+€

Induciﬁon: Suppose, there exists a path from i to j through a state which is not higher
~ than k; This situation leads to two cases:

1. There exists a path from state i to state j ‘which does not go through k and so the
language accepted is R;*". ‘ o

2.1 There exists a path from state i to state j through k as shown below:

/
v

) Rkk(k'l)
The path from state i to state j can be broken into several pieces as shown below:
1.| The path from state i to state k and not passing through a state higher than £ is

. given by :
5 R, &D :

ik

128 E Regular Expressions and languages

2. The path from state & to state k and not passing through a state higher than k (may
exist zero or more times) is given by
R V)*

3. The path from state & to state Jj and not passing through a state higher than k is
given by o
Rkj(k-l) .

So, the regular expression for the path from state i to state j through no state higher than &
is given by the concatenation of above 3 regular expressions as shown below:

N _p Gl k-1 k-1 k-1)
Ry =Ry +Ri™" Ru™")* Ry™"

By constructing the regular expressions in increasing order of subscripts, each'Rij“‘)

depends only on expressions with a smaller superscript and all the regular expressions are
available whenever there is a need. Finally, we will have Rij(n) for all i and j.

Note: Assume that state 1 is the initial state and the regular expression for the lang\jage is
the sum of all regular expressions Rij(n) where state j is an accepting state. ‘

Example 3.20: Obtain a regular expression for the FA shown below:

oo
@2

What is the language corresponding to the regular expression?

‘Solution: Let o = 1 and qi = 2. By renaming the statés, the above FA can be written as

shown below:
1 ﬂ 0,1 , .
%1]} —0 | y

By_ following the procedure shown in Kleene’s theorem (séction 3.4) we have

Basis: when k =0

) _ i - -
llill‘o):g+l Note: If the beginning and ending
: '2(0) - states are same add £ which denotes
Ra™"=¢ ' the length 0 '
R22(0)=8+0+1

Finite Automata and Formal Languages B 129

P
|
|

Induction The regular expression corresponding to the path from state i to state j '
througﬁ a state which is not higher than k is given by

l k k-1 k-1 k-1 k-1
gRij() = Rij() + Rik() [Rkk()] Rkj()

When k = 1 (i.e., path from state i to state j through a state not higher than 1): The
various' regular expressions obtained are shown below: '

%Ru‘” =Rin® +Ru® Ru®TRy®
—(e+1)+(e+l)(e+l) (e+1)
=+ +E+1D)1"(€+1)
=(§+1)+1‘
=1

%Rlz(l) =R, 0) +R“(0) [R (0)]‘R12(0)
! —O+(a+1)(e+1) 0 '
-—0+1 0
=10

R (1) =Ry ©) +R2](0) [R“(O)] R“(O)
_¢+¢(e+1) (€+l)
=9

R =Rp® +Rp® RyOTR®
: =E+0+1)+oE+1)0
=(E+0+1)

i

When k=2 (i.e., path from state i to state j through a state not hlgher than 2): The
vanous regular express1ons are given by _

;Rll() = Ru(l) +Ri2" [R"TRn "
i =1"+1°0(e+0+1) ¢
=1

Ri? =R + R [RT Ry

’ =1‘0+l'0(s+0+1)'(e+0+1)
—10+10(0+1) €+0+1) .
=1 0+1 0(0+ l)
=10 O+ l)

130 E Regular Expressions and languages

RZ,‘Z’W—R 4 Ry Ry 'Ry
—¢+(£+0+l)(£+0+1) o
_¢ :

Rzzm' =Ry + R Ry Rp" ,
-(8+0+1)+(e+0+1)(s+0+l) e+0+1)

=(€+0+1)+©0+1) ;
=0+1) | o

Note: Since the total number of states in the given machine is 2, maximum value of k
“should be 2. ,

Since the start staté is 1 and final state is 2, the regulér expression is givenby
Ri?>=100+1)

So, the regular expression for the given DFA is 1°0 (0 + 1)° which is the léxﬁguage
consisting of any number of 1’s followed by a zero and then followed by strings of 0’s
and 1’s. This can also be expressed as strings of 0’s and 1’s with at least one zero.

Example 3.21: Obtain a regular expression for the FA shown below:

1 N 0,1
. What is the language corresponding to the regular expression?

Note: The solution for this problem is élready given in previous example. Another
approach to solve this problem is that, instead of calculating the regular expressions for
R;; from k = 0 to n, start from k =n, and then work back to the case when k =0.
‘i
In the current example, number of states n = 2 and hence to start with assume k = 2 The ~
regular expression is given by j

Ri2? =Ry + R R R, (Eq. 1)

It is clear from the above expression that’Rn(” and Rzz(” are required and are obtained
using the following regular expressions:

Rlz(:) = Rlz(g) + Ru(z) ['Rl(i)(‘ol]* ng(O)‘ s (Eq. 2)
Rx" =Rp” + Rz.f "IRuPTR Y. (Eq. 3)

Finite Automata and Formal Languages H 131

The regular expressions for these two equations can be obtained if we know Ry,?, Riz(o),_
R and R»,® which are obtained when k = 0 as shown below:

When k = 0: |
0 _
R“(o) =e+1 Note: If the beginning and ending
Rip =0

© states are same add € which denotes
Ry "=0 " the length 0

R22(0)=8+0+ 1
Substituting these values in Eq. 2 and Eq. 3 we have,

‘R =R;,? +R,© [Ri“T'R”
=0+(€+1)(E+1) 0
=0+1°0

=10

RV =Ry +Ra©@ R OT'R,,®
=(€+0+1)+0(E+10
| =(€+0+1)

Substit;uting for R;," and Rzzm in Eq. (1) we have

n @ 1 1 D' (1
R? =R + Ri2"” [R2"] R

=10+10@€+0+1)" (€+0+1)

=10+100+1) (e+0+1)

=10+100+1)

=100+1)
So, the regular expression for the given DFA is 1°0 (0 + 1)" which is the language
consis:ting of any number of 1’s followed by a zero and then followed by strings of 0’s
and 1’s. This can also be expressed as strings of 0’s and 1’s with at least one zero.

Example 3.22: Consider the DFA shown below

4)y
States 0 1
—-q Q2 G
q: U (¢
*q3 - qs | _q;

132 & Regular Expressions and languages

Obtain the regular expressions R(®), Ry and s:mpllfy the regular expressions as much as
possible.
Note: The symbol * preceding state q; indicates that qs is the final state.

Solution: Rename the states 1, 2 and 3 in order and the resulting DFA is shown below:

b
States 0 1
-l 2 1
2 13 1
*3 3 2

where state 3 is the final state and state 1 is the start state. The correspondmg transmon
diagram is shown below:

By following the procedure shown in Kleene’s theorem (section 3.4) we have

Basis: when k=0

© _

g”()_8+1 Note: If the beginning and ending

2o states are same add € which denotes
Riz “=¢ the length O (i.e., whenever i = i)
Ry¥=1

21
Rzz‘o’ =¢o+E=¢
Ry;P=0

Induction: The regular expression corresponding to the path from state i to state j
through a state which is not higher than k is given by

Ri‘(k) = Rij(k DI Rik(k)] [Rix (k- l)] Ry (k1)

When k =1 (i, path from state i to state j through a state not higher than l) The
various regular expressions obtained are shown below: '

Finite Automata and Formal Languages B 133

R =R,@ +R;@ RyPTR,®
=E+D+E+DE+1) (E+1)
=+ D+E+D1 €+
=E+D)+ 1

=1
Ri," =R, +R,® [RII(O)]*RIZ(O)
-O+(£+l)(s+l) 0
—0+1 0
=10

Ris” =Ry +Ry© ROTRF
| =0+ €+ 1) (e+1) ¢

;Rz:m =Ra® +Ra® Ru“TR,®
| =1+1(+1) (e+1)
=1+11 =11

?22(1) =Rx® +Ry® Ry OTR”
=e+1(€+1)0 |
=e+110

RBU) =Rxn® +Ruy@ Ry P1R;;”
| =0+1(€+1)¢
=0 ‘

hﬂ(l) =R31” + Ry Ry OTR;©
- =0+0(E+1) (E+1)
=¢

Rx" =R3;® + R31@ Ry P1'R1,©
; =1+0(+1)0
! 1
Rx" =Ru® +Ry: P (R 1O1R15©
| =(€+0)+¢(E+0) ¢
i =(€+0)

When k = 2 (i.e., path from state i to state j through a state not hlgher than 2): The
various'regular expressions are given by :

134 & Regular Expressions and languages

R® = R‘n(” * Ry [1322(*”]*1321“)
= l*+ 1*0(8-:- l‘l 02 11
=1 +10(110) 11

R2? =R +Rp™ RV Ry
=1'0+10(+110)" (e +1170)
=10+ 170 (11°0)" (e + 1170)

R;5? =R13(1)*+ Ry [Bzg‘l)]*RBm '
=¢*+ 1 0(8*+ 110) 0
=170(1170)0

Ry® = Rzlm + Rzz(lz [Rzz“)]*Rzl(': .
=11 +(+110)(e+110) 11
=11"+(e+110) 11°0)11"

Ru® =Ry + Ry [Rys "R :
=(e+11°0) + (e +11°0) (e + 11°0)" (¢ + 1170)
=(€+11'0) + (e + 11°0) (11°0)" (e + 1170)

R23(2) =R23(l) +R2%(l)[R22(l)]:R23(l)
=0+(e+1170)(e+11°0)°0
=0+ (+11'0)(11°0)' 0

R;® =Ry +R32(:) [Bzz(:)]*Rm(l)
=0+ l*(szr 1‘1 0) 11
=1(110) 11

Ru® =Ry + Rsz(:) [Bzz(l)]*Rzz(l)
=1+1(e+110) (¢+110)
=1+111°0)" (e +11°0)

Ri® =Ry +Rs" *[Rgz(l)]*st(l)
=0+¢)+1(110) O

The regular expression is given by R‘i can be calculated as shown below:
Ris® =Ris® +Ri® Rus?] Ry o

=1"0(11"0)'0 + 1°0(11°0)"0 [(6 +€)+ 1(1170)"0)* (0 + e) +1(1 1*0)'q |

i
i
|

i
I

X Finite Automala and Formal Languages B 135

35 ToObtain RE from FA(by eliminating states)

In this section let us see how to obtain a regular expression from FA.

Theorem Let M = (Q 2., 8, qo, F) be an FA recogmzmg the language L. Then there
exists an equwalent regular expression R for the regular language L such that L = L(R).

The general procedure to obtain a regular expression from FA is shown below. Cons1der
the generalized graph

i

i
i

« , Fig. 3.10 Generalized transition graph

where 1y, 12, 13 and r4 are the regular expressions and correspond to the labels for the
edges. The regular express10n for this can take the form:
r=r " (ta + 1311 T2) _ 3.1

Note: !
1. For each final state (accepting state) q, apply the reduction procedure and bring
the graph to the form shown in figure 3.10.
2. [f q is not the start state, the reduced graph obtained will be of the form shown in
ﬁgure 3.10. and use the equation 3.1 to obtain the regular expressmn

3. '.[f the start state is also an accepting state, the state elimination process has to be

rformed so that we should get rid of every state except the start state. The final
!automaton will be of the form

r
N
(@)

4. ;The final regular expression is the sum of all the regular expressions obtained
lfrom the reduced automata for each accepting state.

For elemple If r; is ot there in figure 3.10, the regular expression can be of the form
‘ r=1'rrs , (3.2)

1If qo and qu are the final states, then the regular expression can be of the form
r—r1*+r| r2r4 : (3.3)

136 H Regular Expressions and languages

Example 3.23: Obtain a regular expression for the FA shown below:

It is clear from the FA that q3 is the dead state (i.e., once the state q3 is reached
irrespective of the input, the machine stays in qs only and there is no way to réach the
final state) and so all the edges connected to g3 can be removed and the resulting figure is
shown below: ' : ’

It is clear from the figure that if we input the string 01, the machine goes to state q; and
comes back to qo and the process can be repeated. So, instead of q1, we can loop back on
the string 01 as shown below:

Similarly on 10, the machine comes back to qo and so we can replace it by anoth;er loop
with the edge labeled 10 as shown: !

r Finite Automata and Formal Languages & 137

i
t
I

Itis cleaf from this figure that the machine accepts stnngs of 01’s and 10’s of any length

and the regular expression can be of the form
(01 + 10)°

Examplé b.24: What is the language aceepted by the following FA |

Since, stiate qz is the dead state, it can be removed and the following FA is obtained.

1

The state qo is the final state and at this pomt it can accept any number of 0’s which can

be represented using notatlon as
- 0"

qi is also the final state. So, to reach q; one can input any number of 0’s followed by 1
and foll¢wed by any number of 1’s and can be represented as
- 011"
B
So, the final regular expression is obtained by adding'O* and 0°11". So, the regular
expression is , '
RE=0"+0"11"

It is clear from the regular expression that language consists of any number of 0’s
(possiblb(£) followed by any number of 1’s(possibly €). ' '

Exampl& 3.25: Obtain a regular expression for the FA shown below:

138 & Regular Expressions and languages

The graph”should be converted into generalized graph (shown in figure 3.10) by
eliminating state q, as shown below.

1+01°0

By comparing this ﬁgure with figure 3.10, we have

'I'|—1+Ol O
1'2—01 1
=0
s=0+1

By substituting these in equation 3.1 we have
r=(1+ 01*0)" 01"1[(0+1) + ¢(1'+,01*0)*01*1]‘
=(1+01 0) 01 1[(0+1)+ 0"
=(1+01°0)" 0171 (0+1)" '

*

So, the regular expression for the given FA is (1 +01°0)" 011 0+1)

3.6 Applications of Regular Expressions

In section 1.20 we have seen how an identifier for a programming language can be
represented using the grammar. In section 1.21 we have seen how a finite automaton can
be constructed to identify an identifier. In this section, let us see how a regular expression
can be formed for an identifying an identifier. This shows that regular expressions, -
regular grammars and finite automata are equivalent i.e., given one we can find the other.
The various applications of regular expressions are provided below:

Regular expressions in UNIX: ‘Regular expressions are extensively used in UNIX
operating system. But, certain short hand notations are used in UNIX platform using
which complex regular expressions are avoided. For example, the symbol ‘> stands for
any character the sequence [abcde.....] stands for the regular expression “a + b +c+d+
[", the operator | is used in placg of +, the operator ? means “zero or one of” etc.
Most of the commands are invoked invariably uses regular expressions. For example,
.grep (Global search for Regular Expression and Print) used to search for a pattem of
string. :

Pattern Matching refers to a set of objects with some common properties. We can match
an identifier or a decimal number or we can search for a string in the text.

Finite Automata and Formal Languages H 139

Lexic#] analysis Regular expressions are extensively used in the design of lexical
analyjér phase. This phase scans the source program and recognizes all the tokens which
are logically. together. The UNIX commands such as lex accepts regular expressions as
the input and produces the lexical analyzer generator. This generator takes a high-level
dcscrii)tion of a lexical analyzer as the input and produces lexical analyzer.

Examf)lé 3.26: Obtain a regular expression to identify an identifier.

An id;entiﬁer stats with a letter. This letter can be followed by combination of zero or
more letters and digits i.e., an identifier can be a single letter followed by strings of letters
and digits of any length and can be represented as

; letter (letter + digit)”

Example 3.27: Obtain a regular expression to identify an integer

An integer can start with any of the signs +, - or € (null string means no sign) followed by
one or more digits ranging from O to 9. This can be represented using a regular
expression as

’ sd* or sdd*

wheré s stands for sign and d stands for the d1 gits from 0 to 9.
Examf‘)le 3.28: An application of regular expression in UNIX editor ed.

In UNIX operating system, we can use the editor ed to search for a specific pattern in the
text. onr example, if the command specified is
/acb*c/

then the editor searches for a string which starts with ac followed by zero or more b’s and
followed by the symbol c. Note that the editor ed accepts the regular expression and
searcl%:es for that particular pattern in the text. As the input can vary dynamically, it is
challe;nging to write programs for string patters of these kinds.

Noteé To write an algorithm for pattern matching what we have to do is, first obtain the
regular expression for the pattern and obtain an NFA as discussed in section 3.3. The
NFA ccan be converted into its equivalent DFA as discussed in section 2.10. The resulting
DFA .can be reduced as discussed in section 2.11 and obtain the transitional table. By
looking at the transitional table or DFA we can easily write an algorithm or the program.

Example 3.29: Write a ¢ program to identifier an identifier.

‘The FA to accept an identifier is shown in figure below:

140 2 Regular Expressions and languages

letter / digit

not letter not letter or digit | 3

e- Any character }‘

To start with the machine will be in state 0. So, initialize the variable state to 0 as shown
below:
state = 0;

In state O, if the input symbol is a letter it goes to state 1 else it goes to state 2. In state 1
as long as the input is letter/digit the machine stays in state 1 else it enters into state 2.
Once the machine enters into state 2 the string is not a valid identifier. The complete
program to check whether the input string is an identifier or not is shown below:

char str[30]; /* Can be valid identifier or invalid identifier*/

int i=0; /* index variable for string */
int valid = 0; /* Empty string is not a valid identifier */.

int state=0; /* initial state is 0 */ :

int over = 1; /* Enter into while loop initially */

while (over)
{
switch(state)
{
case 0:
ch = getch();

if (isalpha(ch))

{
str[i++] = ch;
valid=1; /* valid identifier */
state = 1; /* So, go to state 1 */

else

Finite Automata and Formal Languages 141

{
str[i++] = ch; ,
valid = 0; /* invalid identifier */
state = 2;
}
break;
case 1:
ch = getch(); _ ,
if (isalnum(ch)) /* collect all valid characters
{ A
str[i++] = ch; /* store the character */
valid=1; /* Valid character */
state = 1; /* Remain in state 1 */
) -,
else if (ch == \r’)
{
str[i] = \0°’; /* Null terminate */
over =0; /* Quit the loop */
} .
else
{ /* collect all invalid characters */
strfi++] = ch; /* store the character */
valid = 0; /* invalid identifier */
state = 2; /* goto invalid state */
}
break;
case 2:
: while ((ch = getch()) != ‘\r’) /*Carriage return™/
{ _
str[i++] = ch;
} .
str[i] = \0’; /* NULL terminate */
valid = 0; /* invalid identifier */
over = 0; /* Quit the loop */
}
} ;
if (valid) ‘ |
printf(“The string %s is a valid identifier\n”, str);
else

printf(“The string %s is not a valid identifier\n”, str);

142 & Regular Expressions and languages

3.7 Chomsky Hierarchy

In section 1.14, we have studied the grammar of only one type. There are other types of
grammars also. Noam Chomsky who is the founder of formal language theory has
classified the grammar into four types

* type 0 grammar

* type | grammar

* * type 2 grammar

* type 3 grammar

3.8 Type 0 grammar(Unrestricted grammar)

The type O grammar or unrestricted grammar is defined as follows.

Definition: A grammar G = (V, T, P, S) is said to be type 0 grammar or unrestﬁcted
grammar if all the productions are of the form o — f where
ae (VUT) andBe (VUT)

In this type there are no restrictions on length of a and f. The only restriction is that o
can not be € i.e., € can not appear on the left hand side of any production. But, € can
appear on the right hand side of the function. This is the largest family of grammars and
much more powerful than other types of. grammars. Any language can be obtamed from
this grammar.

The language generated from this grammar is called type 0 language or
recursively enumerable language. Only Turing machine can recognize this language. In
the subsequent chapters, we shall see how to obtain the Turing machines. Consider the
example shown below:

S — aAbje
aA — DbAA
bA —» a

is an unrestricted grammar also called phrase structured grammar.

3.9 Type 1 grammar or context sensitive grammar
The type 1 grammar or context sensitive grammar is defined as follows.
Definition: A grammar G = (V, T, P, S) is said to be typel grammar or context

sensitive grammar if all the productions are of the form a0 — P as in type 0 grammar
But, there is a restriction on length of 8. The length of $ must be at least as much jas the

| Finite Automata and Formal Languages & 143
length of aie., |B|>|of and o and B € (VUT)" i.e., € can not appear on the left hand or
right haﬂjd side of any production. It is an &-free grammar. '

» ”fhe language generated from this grammar is called type 1 language or context
sensitive language. Linear bounded automata (LBA) can be constructed to recognize the
language generated .from this grammar and we see the construction of LBA in later
chapters. The following example shows type 1 grammar or context sensitive grammar.

S — aAb
aA — DbAA
bA — aa

3.10 Type 2 grammar or context free grammar

The type 2 grammar or context free grammar is defined as follows.

Definition: A grammar G = (V, T, P, S) is said to be type 2 grammar or context free
grammar if all the productions are of the form A — a where oL € (VUT)* and A is non-
terminal. The symbol € can appear on the right hand side of any production. The context
free grammar was discussed in section 1.14. The language generated from this grammar
is called type 2 language or context free language. Pushdown automaton (PDA) can be
constructed to recognize the language generated from this grammar. The grammar

S — aB|bAfe
A - aAlb
B — bBlale

is an example for context free grammar.

3.11 Type 3 grammar or Regular grammar
The type 3 grammar or context free grammiar is defined as follows.
Definition: The grammar G = (V, T, P, S) is said to be type 3 grammar or regular
grammar iff the grammar is right linear or left linear. A grammar G is said to be right
linear if all the productions are of the form

A — wBand/or A - w
where A Be Vandw e T'. A grammar G is said to be left linear if all the productions
are of the form : :

A — Bwand/orA > w

where A,Be Vandw € T". The following grammar

144 & Regular ExpressionS and languages

S > aaB|bbAe
A 5 aAlb
B — bBlale

is a right linear grammar. Note that € and string of terminals can appear on RHS of any
production and if non-terminal is present on R.H.S of any production, only one non-
terminal should be present and it has to be the right most symbol on R.H.S. The grammar

S — Baa|Abble
A 5 Aalb
B - Bb|a|£

is a left linear grammar. Note that € and strmg of terminals can appear on RHS of any
production and if non-terminal is present on R.H.S of any production, only one non-
terminal should be present and it has to be the left most symbol on R.H.S.

Consider the grammar
S > aA o
A 5 aB|b ’ ‘
B - Abja

In this grammar, each production is either left linear or right linear. But, the grammar is

not either left linear or right linear. Such type of grammar is called linear grammar. So,

a grammar which has at most one non-terminal on the right side of any production
~without restriction on the position of this non-terminal (note the non-terminal can be
~ leftmost or right most) is called linear grammar.

Note that the language generated from the regular grammar is called regular
language. So, there should be some relation between the regular grammar and the FA,
since, the language accepted by FA is also regular language. So, we can construct a finite
automaton given a regular grammar Let us discuss how to obtain finite automaton from
the regular expression.

3.12 Finite Automaton from Regular Grammar

Theorem: Let G = (V, T, P, S) be a right linear grammar. Then there exists a language
L(G) which is accepted by a FA i.e., the language generated from the regular grammar is
regular language. »

_ |
Proof: Let V = {qo, qi, ...} be the variables and the start state S = qo- Let the productions
in the grammar be : J

H

!

" Finite Automata and Formal Languages = 145

f o — X
: X2q2
qQ - X

2
)

qn - xn+l

Assume that the language L(G) generated from these productions is w. Corresponding to
each production in the grammar we can have a equivalent transitions in the FA to accept
the string w. After accepting the string w, the FA will be in the final state. The procedure
to obtaﬁn FA from these productions is given below:

stepl: :
' qo which is the start symbol in the grammar is the start state of FA.

step2: .
. For each production of the form
' ' qi — Wq;
the corresponding transition defined will be of the form °
8'(qi, W) = gj
step3: :
- For each production of the form '

q—>w

~ the corresponding transition defined will be of the form
. 8 (qi, W) =Gf

- where qsis the final state.

As the string w € L(G) is also accepted by FA, by applying the transitions obtained step
1 through step3, the language is regular. So, the theorem is proved.

Exaniple 3.30: Construct a DFA to accept the language generated by the following
grammar. .

S |—» |0l1A
A |- |10B
B | o |0A|ll

'146 H Regular Expressions and languages -

Note that for each production of the form

. A—->wB
the corresponding transition will be
oA, w)=B
Also, for each production of the form
A-ow
we can introduce the transition
8(A, W) =qr

where g is the final state. The transmons obtained from grammar G is shown using the
following table:

Productions " | Transitions

S - OIA &S, 00) = A

A - 10B (A, 10)=B

B — O0A 8B, 0) = A

B » 11 0B, 11)=qr

The FA corresponding to the transitions obtained is shown below:

So, the DFA M = (Q, Z, 3, qo, F) where

Q={S,A B, q:q1 92 g3}

>={0,1}.
Qo=S
F = {qs}

d is as obtained from the table above
The addmonal vertices introduced are qy, gz, qs.

Example 3.31: Construct a DFA to accept the language generated by the folliowmg
grammar.

Finite Automata and Formal Langhages 147

aAle
aA|bB|e
bB | €

S
A
B

HNHE

Note tliiat for each production of the form

A—>wB
the corresponding transition will be
: 0(A,w)=B
Also, for each production of the form
- 7) A->w
we can introduce the transition A
S(A) W) =4qr

where g is the final state. The transitions obtained from grammar G is shown using the
following table: ' ‘

Productions Transitions

S —» aA 6(S,a)=A

S 5 ¢ S is the final state

A — aA ' 5(A,a)=A

A — bB 8(A,b)=B

A > ¢ A is the final state
B —» bB 5(B,b)=B

B 5 ¢ B is the final state.

Note: For each production of the form A — €, make A as the final state.

The FA corresponding to the transitions obtained is shown below:

So, the DFAM = (Q, Z, 8, qo, F) where

Q={S,A,B}
> ={a, b}
Q=S

148 H Regular Expressions and languages

F={S, A, B}
d is as obtained from the table above.

3.13 Regular Grammar from Finite Automaton

Theorem: Let M = (Q, X, 8, qo, F) be a finite automaton. If L is the regular language
accepted by FA, then there exists a right linear grammar G = (V, T, P, S) so that L =
L(G). ,

Proof: Let M = (Q, X, 3, qo, F) be a finite automata accepting L where
Q=1{qo,q1, ...qa} ;
2 ={a, a, ~+-am}

A regular grammar G = (V, T, P, S) can be constructed where
‘ V= {qo, q15-.---qn}
T=2X
S= Jo

The productions P from the transitions can be obtained as shown below:

stepl:
For each transition of the form &(g;, a) = q, the corresponding production deﬁned
will be
qi — ag;
step2:
If g € Fi.e., if q is the final state in FA, then introduce the production
q—oE

As these productions are obtained from the transitions deﬁned for FA, the language
accepted by FA is also accepted by the grammar.

Example 3.32: Construct a regular grammar from the following FA

Finite Automata and Formal Languages & 149

Note thiat for each transition of the form 8(A, a) = B, introduce the production A — aB. If
q € Fie,, if qis the final state, introduce the production q — €. The productions obtained
* from the transitions defined for FA is shown using the following table:

Transitions Productions
5S,a) = A |S o aA
5S,b) = C 1S — bC
5A,a) = C A — aC
5(A,b) = B A —> bB

_ 5B,a) = B B - aB

; 3B,b) = B B — bB

f 8C,a) = C C -5 aC
C,b) = C C -5 bC-

It s v%:ry important to note that B is the final state. So, we have to introduce the
production B — €. The grammar G corresponding to the productions obtained is shown
below::

TG =(V, T, P, S) where .

vV={S,A B,C}

T={a,b}
P={
S — aA|bC
A — aC|bB
B — aB|bBje
| C — aC|bC

} :
S is the start symbol

Exampile 3.33: Construct ﬁa regular grammar for the following FA

Note that for each transition of the form 8(A, a) = B, introduce the production A — aB. If
q€ Fie.,ifqisthe final state, introduce the production g — €. The productions obtained
from the transitions defined for FA is shown using the following table:

150 & Regular Expressions and languages

Transitions Productions

6(S,a) . = A S — aA
5S,b) = S S — bS
0(A,a) = A A 5 aA
8(A, b) B ‘A > bB
6(B,a) = A B — aA
6(B,b) = C B — bC
6(C,a) = C C - aC
&C,b) = C C o bC

It is very important to note that S, A and B are final states. So, we have to introduce the
productions S — €, A — ¢ and B —» ¢ The grammar G corresponding to the
productions obtained is shown below:

- Grammar G = (V, T, P, S) where

V={S,A,B,C}

T = {a, b}

= {
S o aA|bS|e
A > aA|bB|e
B — aA|bC|ce
C - aC|bC
}

S is the start symbol ‘
Note: The FA in this problem accepts strings of a’s and b’s except those containing the
substring abb. So, from the grammar G we can obtain a regular language which consists
of strings of a’s and b’s without the substring abb.

Example 3.34: Obtain a right linear grammar for the language
L={a"b™|n=22,m>3}

Note: In a right linear grammar either we should have purély terminals (including €) or
terminals followed by a single non-terminal.

It is clear from the given language that the language should start w1th at least two a’s
which can be done using the production

S—)aaA.

After applying this production, we have two a’s followed by A from which any number
of a@’s or at least three b’s can be generated. The corresponding productions are

: " Finite Automata and Formal Languages & 151

A — aA|bbbB
Now, fﬁom B ahy number of b’s can be generated using'the production

B — bBle

So, the éﬁnal right linear grammar is G = (V, T, P, S) where

V={S, A, B}

T={a, b}

P= {
S — aaA .
A — aA|bbbB
B — bBle
}

S is the start symbol

Note: EaSIest way of solving this problem is to construct a DFA. Once we havc a DFA,
we can| easﬂy obtam the right linear grammar as we have done in examples 3.32 and 3.23.

Exampla 3.35: Obtain a right linear grammar for the regular expression ((aab)* ab)’

Note: Easwst way of solving this problem is to construct a DFA. Once we have a DFA,
we can easﬂy obtain the right lmear grammar as we have done in examples 3. 32 and 3.23.

The DFA for this regular express1on is shown

Now, obtain the right linear grammar from the DFA as discussed in the pervious
examples. The final right linear grammar is G = (V, T, P, S) where

152 & Regular Expressions and languages

a, b}

{
S — abAJaabB|e
A - abA|aabB|e
B aabB|abA

{S, A, B}
T {
P

}
S is the start symbol

3.14 Left Linear Grammar from Finite Automaton

The left linear grammar can be obtained from FA as shown below:

e Obtain the reverse of given DFA
e Obtain the right linear grammar from the reversed DFA
¢ Obtain the left linear grammar from right linear grammar.
Let us take some examples and see how a left linear grammar can be obtained.

Example 3.36: Obtain a left linear grammar for the DFA shown below

AP 1
(O)—®)

Step 1: Reverse the DFA i.e., make A as the final state and C as the start state and'reverse
the direction of the arrow. The reversed DFA is shown below:

a oo
O")

Step 2: Obtain the nght linear grammar for the above DFA. The correspondmg

productions are shown below:
C - 1IC|IB
B — OB|0OA|OC
A - 1A]e

Step 3: Reverse the productions of right lmear grammar to get left linear grammar For

example, if ‘
‘ A — abcdB v A |

Finite Automata and Formal Languages 153
is the psfoduction in right linear grammar, after reversing the productidn will be of the
form .

A — Bdcba

The coﬁversion of right linear grammar to the left linear grammar is shown below:

Right linear grammar Left Linear grafnmar_

‘; .
C - IC|1B C — Cl|B1
B — 0BJOAJOC B — B0|A0|CO
A - 1Ale A o Alle

So, theéfinal left linear grammar is

V={C, A, B}
T={0, 1}
P={

Cc - Ci1|Bl
B — B0|A0|CO
A — Alle

}
S = C is the start symbol

Now, fwhatever language is accepted by original DFA, the same language should be
obtained from the left linear grammar. The string 10101 is accepted DFA. The same
string ¢an be derived from left linear grammar as shown below:

C=Bl (By applying C — Bl) .
= A0l (By applying B — A0)
= A101 (By applying A — Al)
= A0101' (By applying A — A0)
= A10101 (By applying A — Al)
= 10101 (By applying A > €)

Hence, the left linear grammar obtained is equivalent to the given FA.

Example 3.37: Obtain a left linear grammar for the regular expression ((aab)* ab)’

~ 154 H Regular Expressions and languages

The DFA for this regular expréssion is shown

Step 1: Reverse the DFA. In the reversed DFA, A will be the start state and A and S will
be the final states. After reversing the symbols and the arcs the corresponding DFA
obtained is:

ba

ﬂba
-@O—

baa

baa

Step 2: Obtain the right linear grammar for the above DFA. The corresponding
productions are shown below:

A — baA|baB|baSle

B — baaB| baaA|
baaS

S o5 ¢

Step 3: Reverse the productions of right‘ linear grammar to get left linear grammar. For
example, if
A - abcdB

is the production in right linear grammar, after reversing the production will be of the
form |

A — Bdcba

The conversion of right linear grammar to the left linear grammar is shown below: l ;

i

Finite Automata and Formal Languages & 155

i

Right linear grammar Left Linear grammar
A - baA baB|baS|e - A — Aab|Bab|Sable
B - baaB| baaA| baaS B — Baab|Aaab [Saab
S
Sc. g—) ¢ 8 S O E
|
| V={A,B,S}
: T ={a, b}
P={
A — Aab|Bab|Sab|e
B — Baab|Aaab|Saab
S -5 ¢

}
A is the start symbol
Now, whatever language is accepted by original DFA, the same language should be

obtained from the left linear grammar. The string aababaabab is accepted DFA. The same
string gan be derived from left linear grammar as shown below:

A = Bab (By applying A — Bab)
. = Aaabab (By applying B — Aaab)
. = Aabaabab (By applying A — Aab)

= Saababaabab (By applying A — Saab)
'=> aababaabab (By applying S =€)

Hence,: the left linear grammar obtained is equivalent to the given FA.

Examp;Iq 3.38: Obtain a left linear grammar for right linear grammar shown below:

S —> abA
A - baB
B — aA|bb

The DFA for the right linear grammar is shown below:

g ab _ bb :

156 & Regular Expressions and languages

Step 1: Reverse the DFA i.e., make S as the final state and C as the start state and reverse
the direction of the arrow. The reversed DFA is shown below:

Step 2: Obtain the right linear grammar for the above DFA. The correspondmg
productions are shown below:
~ C — bbB
B — abA
A - ba|aB

Step 3: Reverse the productions of right linear grammar to get left linear grammar. For
example, if
A > abcdB

is the production in right linear grammar, after reversing the production will be! of the
form ' |

A - Bdcba

The conversion of ri ght linear grammar to the left linear grammar is shown below: |

Right linear grammar ' Left Linear grammar
co P C - Bbb
— abA B — Aba
A - balaB A s ab|Ba

So, the final left linear grammar is

V={C,A,B)
T={a, b}
P= {
C - Bbb
B — Aba

A - ab|Ba ' -
}

- § =C is the start symbol

Finite Automata and Formal Languages & 157

Now, whatever language is accepted by original DFA, the same language should be
obtaineﬁ from the left linear grammar. It is left to the reader to show the sample example
so that the same language is accepted by right linear and left linear grammar. Hence, the
left linear grammar obtained is equivalent to the given FA.

3.15 Regular Expressions in UNIX

A regular expression is a set of characters that specify a pattern. They are used to search
for specific lines of text containing a particular pattern. The term "regular” is used to
describe formal languages. Majority of the UNIX utilities operate on ASCII files one line
at a time.. The regular expressions will be used in majority of the editors to search for a
speciﬁé pattern. The notations that are used in UNIX platform are shown below:

A dot will match any single character except a newline character.
* 4+ Star and plus are used to match zero/one or more of the preceding expressions.
? Matches zero or one copy of the preceding expression.
| A logical ‘or’ statement - matches either the pattern before it, or the pattern after.
A Matches the very beginning of a line.
$
/

‘Matched the end of a line.
‘Matches the preceding regular expression, but only if followed by the subsequent
.expression. _
[] ‘Brackets are used to denote a character class, which matches any single character
within ; »

the brackets. If the first character is a “»’, this negates the brackets causing them -
to match ‘ .

-any character except those listed. The ‘-’ can be used in a set of brackets to

‘denote arange. C escape sequences must use a ‘\".

[

'Match everything within the quotes literally -
() Group everything in the parentheses as a single unit for the rest of the expression.

The various regular expressions are described below:

[09] | Asingle digit

[0-9}+ " An-unsigned positive integer

Twn 1+ Match white spaces such as tab, newline and space
[aeiouAEIOU] Match the vowels
[a-zA-Z] Match the consonants

"+"9[0-9]+ Match any positive integer. The operator “+” preceding the symbol “?”
indicates ' ‘

_ . that “+” is optional.
-[0-9]+ Match any negative integer

158 E Regular Expressions and languages
. Using the shorthand notations, the regular expressions can be built. For example
consider the definition of regular expression as shown below:
exp ([eE)([-+])?[0-9]+)?
Here, “e'xp” is the shorthand name for the regular expression
([eEX([-+D?[0-9]+)?
describing the exponent part of the fraction. The symbol “?” indicates that it is the
optional part. Using the above shorthand notation, we can write the regular express1on to
identify the positive fraction as shown below
"+"?[0-9]*"."[0-9]+{exp}
Similarly, the regular expression to identify a negative fraction can be written as
-[0-9]*"."[0-9]+{exp}

Without using the shorthand notation, the regular expressions to identify a posmve
fraction and a negative fractlon can be written as shown below:

"+"2[0-9]*"."[0-9]+([eE]([-+])?[0-9]+)? /* Identify a positive fraction

*/
-[0-91*"."[0-9]+([eE)([-+])?[0-9]+)? /* Identify a negative fraction */

We know that an identifier starts with a letter from “a” through “z” or “A” through A
and followed by any combination of letters or digits and can be represented usmg regular
expression as shown below:

[a-zA-Z])([a-zA-Z]|[0-9])*

The character sets can be combined by placing them next to each other. For cxample, if it
is required to search for a word that :

» Started with a capital letter "S"
Was the first word on a line 1
The second letter was a lower case letter !
Was exactly three letters long, and
The third letter was a vowel

Finite Automata and Formal Languages 159

the regul;ar expression would be "AS[a-z][{aeiou]". The following table gives the regular
expressions and equivalent UNIX notation for the regular expressions. - '

Regular UNIX Notation
expressions | '

: (a+b)* [ab]*

: (a+b)*abb [ab]*”abb”

‘ ab(a+b)* “ab”[ab]*
(a+b)*aa(a+b) | [ab]*”aa”[ab]*
% ,
a*b*c* [a]*[b]*[c]*
a'b'c’ [a]+[b]+[c]+

aa*bb*cc* [a][a]*[bI[b]*[c](c]
*

(atb)* (a + | [ab]*[a(bb)]
bb)
(aa)*(bb)*b [(aa)]*[(bb)*]"b”
(0+1)*000 [01]*°000”
(11)* [(11)*]

01* + 1 “O"[1]*]1

Exercises

1.

e

Obtain the regular expressions for the following assuming 2 =1{0,1}

a. String containing even number of 0’s

~b. String not ending with 001

c. string containing at least one 0

d. String containing exactly one 0

e. String containing not more than 3 0’s
Obtain the regular expressions for the following assuming 2={0,1}

a. L={a"b"cP|n<4,m22,p< 2} Ans: (€ + a + aa + aaa + aaaa) (bbb*) (e + ¢

. +c¢C)

b. L={a®’™"'|n>0, m >0} Ans: (aa)*b(bb)*

c. L={w:|w/mod3=0} Ans:((a+b) (a+b) (a+b))*
Find DFAs to accept the following lanaguages

a. L(00* +010*01)

b. L(0(0+1)*11)

c. L(ab(a+ab)* (a+aa))
Construct an NFA to accept to accept the regular expression (0+1)*(00+1 1)(0+1)*
Construct an NFA for the regular expression 10 + (0 + 11) 0*1 and ‘obtain the
corresponding DFA. Also reduce the states of DFA. :

160 B Regular Expressions and languages

6. Obtain right linear grammar for the DFA obtained in exercise 4.
7. Obtain the right linear grammars for the DFAs obtained in exercise 2.
8. What does the following regular expression imply '
a. a(a+b)*ab
b. (0*1 + 1*0)*0
c. 0%+ (01+0)* . .
9. Obtain the transition diagrams for the regular expression shown in exercise 7.
10. Obtain a DFA for the grammar S — 0S | 1S|0A, A = 1B,B - 0C,C — ¢.
11. For the DFA obtained in exercise 9 obtain the corresponding left linear grammar.
12. Construct a finite automaton to recognize the language generated by the grammar S
—0S|[1A|1,A—0A]|1S0|1S|0]|1 ’
12. What is a regular expression? Give an example
13. Explain what each of the regular expressions represent in English
(a+b)*aa(a+b)*
a*b*c*
a'bc’
aa*bb*cc*
a+b)* (a + bb)
(aa)*(bb)*b
g. (0+1)*000 ,
14. Obtain a regular expression to accept a language consisting of strings of a’s and b’s
of even length _ ‘ "
15. Obtain a regular expression to accept a language consisting of strings of a’s and b’s
of odd length ;
16. Obtain a regular expression such that L(R) = {w | w e {0, 1}* with at least three
consecutive 0’s ' ’
17. Obtain a regular expression to accept strings of a’s and b’s ending with ‘b’ and has no
sub string aa ' =
18. Obtain a regular expression for the FA shown below:

me a0 o

19. Obtain a regular expression to accept strings of 0’s and I's having no two
consecutive zeros B ' :

Finite Automata and Formal Languages 2 16l

20. Obtiain a regular expression to accept strings of a’s and b’s of length < 10

21. How an NFA can be obtained from R.E? Give the procedure.

22. Obtain an NFA which accepts strings of a’s and b’s starting with the string ab
23. Obtam an NFA for the regular expression a* + b* + c*

24. Obtain an NFA for the regular expression (a+b)*aa(a+b)*

25. WHat is the language accepted by the following FA

27. What are the applications of Regular expression

28. Obtain a regular expression to identify an identifier

29. Obtain a regular expression to identify-an integer

30. Explam Chomsky Hierarchy of classification of grammars

31. What is an unrestricted grammar (type 0 grammar)? Give example.

32. What is context sensitive (type 1) grammar? Give example.

33. What is context free (type 2) grammar? Give example.

34. What is regular (type 3) grammar? Give example.

35. What is right linear grammar? Explain with example ‘ \

36. What is left linear grammar? Explain with example

37. What is linear grammar? Explain with example

38. Prove that for every regular language generated by regular grammar there exists a
correspondmg DFA?

39. Construct a DFA to accept the language generated by the following grammar.

S [|O0lA
A |- |10B
B | —» |O0A|ll

40. Construct a DFA to accept the language génerated by the following grammar.

S |—> |aAle
A |- |aA|bB]e
B |- [bB]e

162 & Regular Expressions and languages

4]. Prove that for every DFA, there exists a right linear grammar.

42. Construct a regular grammar from the following FA

44. Obtain a right linear grammar for the language L = {a"b™ |n > 2, m > 3}
4 Obtain a right linear grammar for the regular expression ((aab)* ab)'r

- 46. How a left linear grammar can be obtained from FA?

47. Obtain a left linear grammar for the DFA shown below

AL

A
(»)

48. Obtain a left linear grammar for the regular expression ((aab)* ab)” :
49. Obtain a left linear grammar for right linear grammar shown below:

S — abA
A > baB
B — aA|bb

~ Properties of Regular Languages

What we will know after reading this chapter?

' Properties of regular languages such as closure under
s Union :

= Concatenation

» Star

s Complementation

= Intersection

= Difference

* Homomorphism

Proof for all the above properties

Limitations of Regular languages

Non regular languages

Pigeonhole principle :

Pumping Lemma for regular languages

Proof of Pumping Lemma

Applications of Pumping Lemma

General method of showing that certain languages are non-regular using

Pumping Lemma

Number of problems showing that the languages are non-regular using

Pumping Lemma -

Reducing the states of DFA

What are distinguishable and non-distinguishable states

Solution to varieties of problems while reducing the states of DFA

Solution to more than 20 problems of various nature’

VVVY V VVVVVVVYV

This chapter deals with closure properties of regular languages. The different closure
properties covered in this chapter are union, concatenation, star-closure, intersection,
complementation etc. This also covers pumping lemma which is a very useful concept to
check whether the given language is regular or not.- B

164 B Finite Automata and Formal Languages

4.1 Closure under Union, concatenation and star

Theorem: If L, and L, are regular, then L; U L,, L;.Ly and L,* also denote the régular
languages and we say that the regular languages are closed under union, concatenation,
start-closure. '

Proof: Let L, and L, are regular languages corresponding to the regular expressions R,
and Ry. By definition, R; + R,, R|.R; and R* are regular expressions and so L; U L,,
Li.L, Li* denote the regular languages and so regular languages are closed under union,
concatenation and star-closure.

4.2 Closure under complementation

Theorem: If L, and L, are regular, then the regular language is closed under
complementation. : :

Proof: Let M = (Q, Z, 8, qo, F) be a DFA which accepts the language L;. Now, let us
define the machine M, = (Q, X, 8, qo, Q-F). Note that there is no difference between M
and M, except the final states. The non-final states of M are the final states of M; and
final states of M are the non-final states of M;. So, the language which is rejected by M is
accepted by M;. Also, a language accepted by a DFA is regular. So, the language
accepted by M is regular. So, a regular language is closed under complementation.

4.3 Closure under intersection

Theorem: If L; and L, are regular, then the regular language is closed under intersection.

Let us consider M, = (Q;, X, 8, qi, Fi) which accepts L, and M, = (Qs, ¥, &, a2, F2)
which accepts L,. It is clear from these two machines that the alphabets of both machines
are same. Let us assume both the machines are DFAs. To accept the language L; N L, let
us construct the machine M that simulates both M; and M, where the states of the
machine M are the pairs (p, q) where p € Q, and q € Q,. The transition for the machine
M from the state (p, q) on input symbol a € X is the (8:(p, a), 8x(q, a)) i.e., if 8;(p, a) =T
and 8,(q, a) = s, then the machine moves from the state (p, q) to the state (r, s) on input
symbol a. In this manner, the machine M can simulate the effect of M, and M,;. Now; the
machine M = (Q, 2., 8, q, F) recognizes L, N L, where :

Q=Q:1xQ; :

q = (q1, g2) where q; and q; are the start states of machine M, and M, respectively.
F={(p.q)|pe Fiandqe F; |

d: Q x X to Q is defined by 8((p, q), a) = (8,(p, a), 8:(q, a)) 4

It is clear from & that

Properties of Regular Languages H 165

8 ((p. q), W) = (8,(p, W), 8,(q, W))

and tbc string w is accepted only if
~ $(@nq).weF
whxch implies (5 (q1, W), 5 (q2, w)) €-F. This will happen if and only if
5(q., w) € F, and 5 (92, W)€ F»

ie., 1§f and only if w € L; N La. So, the regular language is closed under intersection.

44 : Closure under difference

Theif)rem: If L, and L, are regular, then the regular languagé is closed under difference.
Let us consider M, = (Qu, I, 81, qi, F1) which accepts L; and M; = (Qz, . 82, @2, F2)
whnch accepts L,. We define M = (Q, X, §, q, F) recognizing L; - L, as follows.

Q=QixQ:
q=(q1,92)
- F={(p.q)|peFrandqg F; }
~ 8:Qx X toQis defined by 8 ((p, 9), 2) = (8:(p, 2), 82(g, 3))

It is clear from § that
3@ 9. W= (5,0 W), &, W)

and the striﬁg w is accepted only if
6 ((ql’ q2)’ W) € F

whicih implies (51 (q1, w), 52 (q2, W)) € F. This will happen if and only if
5‘1 (q1, w) € Fy and 5‘2 (g2, w) ¢ F,

i.e., if and only if w € L; - L,. So, the regular language is closed under difference. .

4.5 = Closure under homomorphism

Defimtlon Let 2 and T are set of alphabets. The function
h:Y—->T*

166 B Finite Automata and Formal Languages

is called homomorphism i.e., a substitution where a single letter is replaced by a
string. If
W = a;a3a3....2,,
then ‘
h(w) = h(a;)h(a,).....h(a,)

If L is made of alphabets from %, then h(L) = {h(w) | w € L} is called homomorphic
image.

Example4.1: Let >={0,1}T = {0 1, 2} and h(0) = 01, h(1) = 112. What is h(010)? IfL_
{00, 010} what is homormorphic image of L?

By deﬁnition we have . »
h(w) = h(a))h(ay)....h(a,)

So,
h(010) = h(0)h(1)h(0)
=0111201
L (00, 010} = L(h(00), h(010))
= L h(0)h(0), h(0)h(1)h(0))
=L1(0101,0111201)
Therefore,

- h(010) = 0111201
L(00, 010) = L(0101,0111201)

Example42: X ={0,1} T ={1,2,3), h(0) = 3122, h(1) = 132, what is
(0+1)*(00)*?

By definition we have :
“h(w) = h(a))h(ay)....h(a,)
So, . :
(0+1)*(00)* = (h(0) + h(1))* (h(0)h(0))*
= (3122 + 132)* (31223122)*
Theorem: If L is regular and h is homomorphism, then homomorphic image h(L) is
- regular.

Proof: Let R be the regular expression and L(R) be the corresponding regular lang!iage
We can easily find h(R) by substituting h(a) for each a in 3. By definition of regular
expression, h(R) is a regular expression and so h(L) is regular language. So, the regular
-language is closed under homomorphism. |

Properties of Regular Languages 167

4.6 . I Limitations of Regular Languages

So far%we have spent most of our time on regular languages, discussing the different ways
to specify them, the various operations performed on them and their closure properties etc.
Since some restrictions are there in regular grammars, the regular language should be a
subset of all possible languages. It means that some are regular languages and some are
not.

Then, what type of languages are regular and what are not regular? The answer is:
everyéﬁnitc language is regular. Any finite language can be expressed using regular
expression and for any language which can be represented using regular expression, we
can have a DFA. Even some of the infinite languages are also can be represented using
Regular expressions and for these languages also we can construct DFA and so are
regular. '

But, some of the infinite languages are not regular. Though the regular languages are
imporitant, there are non-regular languages which are very interesting and important.
Some of the non-regular languages are:

1. {we {0, 1} | w contains an equal number of Os and1s } .

2. {0°1"€{0,1}*|n20}

3. {a® e {a} |p =2 isaprime number }

4. Check for the matching parentheses (not possible using DFA) :

5. Count number of a’s and then the number of b’s (not possible using DFA) and so

it can not be used as a counter
Itis élear from these examples that it is not possible to obtain corresponding DFA for
these and so they are not regular. So, we are facing problem whenever we encounter non
regular languages. The easiest way to prove that a language is regular is to construct a
DFA. Then, what is the easiest way to prove that a language is not regular? The answer
for this is the pumping lemma. ‘

4.7 Non Regular Languages

In this section, we discuss the way to prove that certain languages are infinite using
_Pumping Lemma. The principle used in Pumping Lemma is similar to the Pigeonhole
principle.

Pigeonhole principle: The pigeonhole principle is based on a simple observation.
Suppose there are n objects and m boxes where number of objects n, are greater than
number of boxes m. In this case, if all n objects are placed into m boxes, then at least one
box will have more than one object.

The pumping lemma is based on this principle. The advantages of pumping lemma are:

168 & Finite Automata and Formal Languages

1. We can easily prove that certain languages are nonregular.
2. Itis possible to check whether a language accepted by FA is finite or infinite.

The pumping lemma is stated as follows:

Pumping Lemma: Let M = (Q, I, §, qo, F) be an FA and has n number of states. Let L
be the language accepted by M and assume the language is regular. Letx € L and |x| > n
i.e., length of the string x is greater than the number of states 'of FA. If the string x can be
decomposed into combinations of strings %

X = uvw

such that Juv|<n, |v| > 1, then uv'w € L fori =0, 1, 2,...... |

Proof: Let M = (Q, X, 8, qo, F) be an FA and Let x = a13;33...an is the input which is
accepted by the machine. Assume the machine has n states and assume that m > n.

Note: If exactly one symbol is accepted by an FA then there are two distinct stated in it.
Similarly to accept exactly two symbols, FA should have three distinct states. In general,
to accept a string x where [x| = n, then the FA should have n+1 states. Let those states be

qo0, 41, Q2...... qo.

Since we have m input symbols, naturally we sho,uld‘have m+1 states in the sequence (o,
q1, qQ2--.-.. qm, Where qo will be the start state and q,, will be the final state as shown
below: ' :

It is clear from the ﬁguré that 8(g;.1, ;) = q; for each 1 <i < m. In this chain of states from
o t0 qm, Suppose a state g appears more than once, say q = q; and q = qj where i < j. In
this case, the chain should have a loop and we can split into three groups: §

1. The first group is the string prefix from a,a,...a;
2. The second group is the loop string from Q41242).1 8]
3. The third group is the string suffix from 2j418j52...2m

as show in figure 4.1.

Properties of Regular Languages & 169 .

< — >
Prefix (u) Loop(v) Suffix(w)

Fig. 4.1 DFA to explain Pumping Lemma

Note that the machine cannot remember the previous state or it does not know how it has
reached the current state. So, whenever we say that the machine has reached the state q,
the machine does not know whether the state is reached after the end of the prefix or after
it has processed the loop. Since the machine cannot distinguish these states, after the
prefix (u), the machine may be in a loop for zero or-more time (accepting the string v
zero q)r more times) and then accept the suffix string (w). In general, if the string x is split
into sub strings uvw, then for all i 20,

3 uv'w € L

I
If F'=f {Qm},> a1az...... an € L(M), then

aia....... 3i-1i2i+1j42. 0« -+ aj-zaj_lajaj+|aj+2. ...an€ L(M)

This can be expressed using the transitions as shown below:

8((]0, F: U b JAPN ai.la;aj+.aj+z am)
= 8(8((]0, F: TF & J ai-[ai), L TRL: T PO am)
= 6(q, A 1420 enenenes am) '
= 8(qk, Ak+1Ak42c e eercens am)
=qm

Also; after the string
the machine will be in state g;. Since g; and g; are same, we can input the string
PPN T: F0, SRS 3 '

any number of times and the machine will stay in g; only. Finally, if the input string is
aj+]aj+2 am .

the machine enters into final state qm.

170 B Finite Automata and Formal Languages

4.8 Applications of VPumping Lemma

All languages are not regular. A nonregular language is that language for which a FA
cannot be constructed. So, to prove that certain languages are not regular, we use
pumping lemma. The typical applications of Pumping Lemma are:

1. To prove that certain languages are not regular. The pumping lemma cannot be
used to prove that a given language is regular.

2. To check whether the language is infinite. If there is a string x such that |x| 2 the
number of states accepted by DFA M, then L(M) is infinite. Otherwise, M) is
finite. So, using Pumping lemma we can check whether the language is finite or
infinite. .

The general strategy used to prove that certain language is not regular is shown below.
1. Assume that the language L is regular and the number of states in FA be n. E

2. Select the string say x and break it into substrings u, v-'and w such that x = uvw
with the constraints |x| > n, juv|<n and |[v] 2 1. _ 1

3. Find any i such that uv'w ¢ L. According to pumping lemma, uviw € L. So, the
result is contradiction to the assumption that the language is regular. Therefore,

the given language L is not regular.
Example 4.3: Show that L = {ww® | w € (0+1)*} is not regular. ' 3
Step1: Let L is regular and n be the number of states in FA. Consider the string

w w

—r— ——

=1...10...00....01......1
R S S S

n n n n

where n is the number of states of FA, w=1....10....0 and reverse of w is given by '
R
w =0....01.....1.

Step 2: Since x| 2 n, we can split the string x into uvw such that juv] <n and |v|>1 as
shown below. : ;

u v w
where |u] =n-1 and |[v| = 1 so that |uv| = |u| + |v] = n-1 + 1 = n which is true. According
to pumping lemma, uv'w € Lfori=0, I, 2,... |

Properties of Regular Languages & 171

Step 3: If i is 0 i.e., v does not appear and so the number of 1’s on the left of X wrll be
less than the number of 1’s on the right of x and so the string is not in the form ww®. So,
uvw ¢ L when i = 0. This is a contradiction to the assumption that the language is
regular. ' _

So, the language L = {ww® | w € {0+1}*} is not regular.

Example 44: Show that L = {a"b" | n 2 0} is not regular.

Stepl: Let L is regular and n be the number of states in FA. Consider the string x =
a"b".

StegZ: Note that |x| = 2n and is greater than n. So, we can split x into uvw such that [uv|
<nand |v| 2 1 as shown below.

n n

—Ar
X = aaaaaaL‘ﬁ bbbbbbb

where lul = n-1and [v| = 1 so that juv|=|u| +|v|=n-1 +1=nand |w| = n. According to
pumping lemma, uv'w € Lfori=0, 1, 2,... :

Step 3: If i is 0 i.e., v does not appear and so the number of a’s will be less than the
number of b’s and so the string x does not contain some number of a’s followed by same
number of b’s (equal to that of a’s). Similarly, if i = 2, 3, ..., then number of a’s will be
more than the number of b’s and so number of a’s followed by equal number of b’s does
not exist. But, according to pumping lemma, n number of a’s should be followed by n
number of b’s which is a contradiction to the assumption that the language is regular.

So, the language L = {a"b" | n'> 0} is not regular.

Example 4.5: Show thatL = {a"b'| n #1} is not regular.

It is given that L = {a"b' | n # 1 }. Let L is regular and n be the number of states in FA.
Since L is regular, L is also regular (Based on Closure property) We know that
L N Lab)=(a"h"|n20}=

where L(a*b*) 'is regular. Since we have assumed that L is regular, L is also
regular(based on the closure property). Since L and L(a'b’) are regular the language

172 B Finite Automata and Formal Languages
L, ={a"b"|n20}

is also regular. But, we have already proved in earlier example 4.4 that L, is not reghlar.
It is contradiction to the assumption that the language L is regular. So, the language
L={a"'|n#l}

is not regular.
Example 4.6: Show that L = {ahi|i > j} is not regular.

StePl Let L is regular and n be the number of states in FA. Consider the string x =

T

~ Step2: Note that [x] = 2n+1 2 n. So, we can split x into uvw such that Juv|] <n and |v|
2 1 as shown below. ’
x=a""b"=a a* ab®
u v ow

where ju|=jand |[v|= k21 and so that uv| = Ju| + Jv| = j+k <n.

Step 3: According to pumpmg lemma, uv'w € Lfori=0
ie.,a (2" ab"e Lfori=0

Now, if we choose i = 0, number of a’s in string u will not be more than the
number of b’s in w which is contradiction to the assumption that number of a’s
are more than the number of b’s.
So, the language L = {a'b’ | i > j} is not regular.
Example 4.7: Show that L = {a"b'c™! | n,| > 0} is not regular.
Stepl: Let L is regular and n be the number of states in FA.

Step2 Since L is regular, it is s closed under homomorphism. So, we can take
h(a) = a, h(b) =a and h(c)=c.

Now, the language L is reduced to
= { a"a'c™| n+l >0}

which can be written as - |
L= { al‘l+l ﬂ+||n+l>0 }

Properties of Regular Languages & 173

which is of the form o
? L={ab'|i> 0}

We know that the above language is not regular (proved in example 4.4) which is

contradlctlon to the assumption that the language is regular. So, the given language
L={a"%c"|n1>0)

is not regular.

Example 4.8: "Show that L = {a" | n > 0} is not regular.

Note: n! = 1*2*3*....n

' Stepi: Let L is regular and n be the number of states in FA.

Step2 Let x = a™. It is clear that |x| > n. So, we can split x into uvw such that juv| <n and
V|2 l as shown below.
X = an! - a| ak an!-j-k
u v ow

where |u|=jand [v] = k > 1 and so that Juv| = u| + |v| = j+k <n.
Step 3: According to pumping lemma, uvwe Lfori=0,1,2,...
ie., '

é@f““eL

So, 1f we choose i = 0, it means that
a’a“"‘e L (i.e.,uwe L)

ﬂ (implies)

an!-k € L

Itis very clear that n! > n! — k. Now, whenk =1,
n!>n!-1

But, according to Pumping Lemma n! = n! - 1 which is not and is a contradiction. So, L
can not be regular.

So, the language L = { a™ | n > 0} is not regular.

174 B Finite Automata and Formal Languages
Example 4.9: Show that L = {0 | n is prime} is not regular.

Note: The language generated from this can take the following form

Stepl: Let L is regular and n be the number of states in FA. Let us choose the value of x
which depends on n.
Let x = 0" € L where n is prime.

Step2: Note that |x| = n and so, we can split x into uvw such that juv] <n and [v| 21 as
shown below. ' : |
x=0"=0' "0 o"*
u v w

where |u|=jand |v|= k =1 and so that Juv| = Ju| + |v|] = j+k <n.
Step 3: According to pumping lemma, uv'w € L fori= 0,1,2,..
i.e.,

0 (0 0"*e L
ie., '

j+ki+n-j-k=n+k({i-1)isprimeforalli=0

Now, if we choose i =n + 1, then
n+k@(i-1)=n+kn=n(k+l)

is also a pn'mé for each
k=1

which is a contradiction (because if k = 1, it will not be a prime) to the assumption that
the language is regular. So, the language L = {0" | n is prime} is not regular.

Example 4.10: Show that L = { w | na(w) = ny(w)} is not regular. Is L* regular?

Note: The language generated from this can take the following form
L = {, ab, ba, abab, aabb, bbas,}

Step1: Let L is regular and n be the number of states in FA. Let us choose the valué'of X
which depends on n. o ' ;
Letx=a"b"e L ‘

Properties of Regular Languages & 175

Step2: Note that |x| = 2n > n and so, we can split x into uvw such that luv] <nand|v|2>1
as shown below. ' _
x=ab"=a2 a* b
u v ow

where |u|=jand|v|= k > 1 and so that [uv| = |u| + [v| = j+k <n.

Step 3: According to pumping lemma, uvwe Lfori=0,1,2,...
1.e., .
@ @) b eLfori=0,1,2,..

Now, if we choose i = 0, number of a’s will be less than the number of b’s and if we
choose i = 2, uv’w will have more a’s than b’s which is contradiction to the assumption
that it has equal number of a’s anb b’s.

So, the language L = { w | no(W) = ny(W)} is not regular. Since L is not regular L*
is also not regular.

Example 4.11: Show that L = { w | na(w) < m,(w)} is not regular.

Stepl: Let L is regular and n be the number of states in FA. Let us choose the value of x
wh:ch depends on n.
: Letx=a""b"e L
Step2 Note that [x| = 2n - 1 > n and so, we can split x into uvw such that [uv| <n and |v|
> 1 as shown below.
: X = an-lbn = q™! bk bn-k
u v oW

where lu| = n-1 and |v| = k and so that Juv| = Ju| + [v] = n-1 + k < n. To satisfy this
condntlon the value of k should be less than or equal tol (m this case).

Step.3,: According to pumping lemma, uv'w € Lfori=0, 1, 2,...
ie.,
| a"™' (%) b"*e Lfori=0,1,2,..
Now, if we choose i =0,
a"' b e L
ﬂ(implies)

a"' b™' e L (whenk=1)

176 B Finite Automata and Formal Languages

So, when i = 0, the number of a’s and b’s are same, which is 'comradlchdn to the
assumptlon that the number of a’s will be less than the number of b’s. So, the language L
{ w|nyw)< (W)} is not regular.

Example 4.12: Show thatL={ww|w € {a,b}* } is not regular.

Stepl: Let L is regular and n be the number of states in FA. Let us choose the valué of x
which depends on n. Let x = a"ba"b e L

Step2: Note that [x| = 2n + 2 > n and so, we can split x into uvw such that Juv| <n and |v|
2 1 as shown below. o
x=a"ba"b=a a* ba"h

u v.ow

where |u|=jand |v|= k21 and so that |uv| =Jul +|v|=j+k <n.
Step 3: According to pumping lemma, uv'w € Lfori=0,1,2,..
ie.,

a (a“) ba"be Lfori=0,1,2,..

Now, if-we choose i = 0, number of a’s on the left of first b will be less than the number
of a’s after the first b which is contradiction to the assumption that they are not equal. So,
the language L = { ww | w € {a,b}* } is not regular.

Example 4.13: Show thatL ={a"|n=k? for k> 0} is not regular.
Note: The above language can also be defined as: L = { a" | n is a perfect square }

Stepl: Let L is regular and n be the number of states in FA. Let us choose the value of x
which dependsonn. Letx =a™ € L (where m = n?)

Step2: Note that [x| 2 n and so, we can split x into uvw such that Juv] <n and |v| 21 as
shown below. .

x=a"=a a a
where |u| =jand |v|= k > 1 and so that |uv| = |u] + |v] = j+k <n.

Step 3: According to pumping lemma, uv'w € L fori=0, 1, 2,...
le.,

Properties of Regular Languages & 177
g a% a™*eLfori=0,1,2,...

Now,zif we choose i = 2, we have
: uv’we L
i.e.,]

| a] 2k mjk eL
ie., | ,_

i am+k el
Since k > 1, we have,
[|a™* = m + k = n + k (since m =n?)
Note that

; n? <n’+k<n?+ 1 (whenk=1)<(®n?+2n+1)=(n+1)’
and so

: n’ < (n+1)?

Smce n2+k (nothing but m+k) lies between n® and (n+1)%, it is not a perfect square which
is contradiction to the assumption that it should be a perfect square (According to
Pumpmg lemma). So, the language L = { a" |n Kk’ fork > 0} is not regular.

4.9 Limitations of finite automaton

Notez There are so many problems for which we can not construct a DFA and still we

want some solution to solve those problems. For example,

1. Check for the matchmg parentheses (not possible using DFA)

2. Count number of a’s and then the number of b’s (not possible using DFA) and so it
can not be used as a counter

The limitations of finite automaton are:
1. An FA has finite number of states and so it does not have the capacity to
" remember arbitrary long amount of information
2. Since it does not have memory FA can not remember a long string. For example,
- to check for matching parentheses, check whether the string is a palindrome or not
I etc. ‘
3. Finite automata or finite state machines have trouble recognizing various types of
- languages involving counting, calculating, storing the string.
The solutlon for all these problems is to have a machine which is more general than DFA
which can recognize these set of languages. In the coming chapters we discuss how these
problems can be solved using Grammars, push down automaton, Turing machines etc.

178 & Finite Automata and Formal Languages

4.10 Equivalence of two states

The language generated by a DFA is unique. But, there can exist many DFA’s that accept
the same language. In such cases, the DFA’s are said to be equivalent. During
computations, it is desirable to represent the DFA with fewer states since the space is
proportional to the number of states of DFA. For storage efficiency, it is required to
reduce the number of states arid there by minimize the DFA. This can be achieved first by
finding the distinguishable and indistinguishable states. First, let us see the definitions of
distinguishable and indistinguishable states.

Definition: Two states p and q of a DFA are equivalent (indistinguishable) if and only if
3(p, w) and 8(q, w) are final states or both &(p, w) and 8(q, w) are non-final states for all
we 2¥ie.if :

o(p,w)e F and 0(q,w)e F
then the states p and q are indistinguishable. If
8(p, w) ¢ Fand §(q, w) & F

then also the states p and q are indistinguishable. If there is at least one string w such that
one of '

3(p, w) and &(q, w)

is final state and the other is non-final state, then the states p and q are not equivalent and
are called distinguishable states. '

The distinguishable and indistinguishable states can be obtained using table-filling
algorithm (also called mark procedure) recursively as shown below:

Note: Before applying this procedure, ensure that the all the states of a DFA are
reachable from the start state and delete all those states that are not reachable from the
start state. :

Step 1: .
For each pair(p, q) wherep€ Qandq € Q,if p€ Fand q ¢ F or vice versa then,
the pair (p, q) is distinguishable and mark the pair (p, q) [by putting say ‘x for the
pair (p,q)] |

Properties of Regular Languages = 179

~ Step2: ;

" For each pair (p, q) and for each a € X find 3(p, a) = r and 8(q, a) = s. If the pair
(r, s) is alrcady marked as distinguishable (Note: The distinguished states are
already marked as ‘x” as the first step) then the pair (p, q) is also distinguishable
and mark it as say ‘x’. Repeat step 2 until no previously unmarked pairs are
marked.

Noté: If the pair (p, q) obtained using the above table filling algorithm (mark proCeduré)
are indistinguishable then the two states p and q are equivalent.

Exarhple 4.14: Obtain the distinguishable table for the automaton shown below.
z

States
- A

B
©
D
E
F
G

o 0 oI a » @ wme

1
F
C
C
G
F
G
E
C

H

Solution: First let us obtain the table for inequalitics (distinguishable or
indistinguishable). This we can do by knowing the various states of given DFA. The
states of the DFA are:

A B C D E F G H

The pairs can be obtained as shown below: (This can be obtained by writing all the pairs
in the matrix form and take only the upper triangular matrix to avoid duplicate elements
and cycles)

(A,B) (AC) (AD) (AE) (AF) (AG) (AH)

(8,C) BD) (BE) (B (BG) (BH)

(Ch) (CE) (CFH (CG) (CH)

(D.E) O, DG DO.H)

- (ER (EG EH)

(F,G) (FH)
(G,H)

180 &

Finite Automata and Formal Languages

The above pairs can be represented in the tabular form as shown below and note that no
pairs are marked.

B|C|D|E|F|G|H

Step 1:

Step 2:

' OR

ommoin|wi»
T(QImMmioiO)w

AIB|C|D|E|F]|G

For each pair (p, q) wherepe Qandq € Q, if pe Fand q & F or vice versa then,
the pair (p, q) is distinguishable and mark the pair (p, q) [by putting say ‘x’ for the
pair (p.q)]. This clearly indicates that one of the pair should be a final state and
the other should be a non final state. So, the various pairs which satisfy the above
criteria are all the pairs involving the final state C and are marked as shown
below:

B

Clx|x

D X

E X

F X

G X

H X
A|B|C|ID|E|F|G

For each pair (p, q) and for each a € ¥ find 8(p, a) = r and 8(q, a) = s. If the pair

- (r; s) is already marked as distinguishable (Note: The distinguished states are

already marked as ‘x’ in the first step) then the pair (p, q) is also distinguishable
and mark it as say ‘x’. Repeat step 2 until no previously unmarked pairs | are

‘marked ' |

Now consider the pairs (p,q) which are not marked in step 1 and obtain the corresponding
pairs (r, s) on input symbols 0 and 1 as shown in table 4.1. ‘

Note: If the pairs (r, s) are marked in step 1, the corresponding pair (p, q) should be

marked

. For example, for the pair (A,B) on 1 is (F,C) and is marked as ‘x’ in step 1. So,

mark the pair (A,B) (shown using shading). On similar lines identify the pairs (r, s) which

Properties of Regular Languages & 181

are nﬂ:marked in step 1 (shown in bold phase) and take the corresponding pairs (p,q) (shown
in shading) and update the marking table with ‘x’ as shown in the marking table 4.2.

s 0 1
(p,9) (r,s) (r,s)
(A,B) (B,G) F,0)
(AD) |@®B,0) (F,G)
(AE) (B,H) (F.F)
(AF) 3,0 F.G)
(AG) |(BG) (F.E)
(AH) 1BG6) F,C)
(B,D) G0 (X&)
(B.E) (G,H) (C,)F)
(B,F) G,0) (C,G)
B,6) (G.6) (CE)
(B.H) (G.G) (C,0)
(D,E) (C,H) (GF)
D,F) (CO) (G.G)
DG |(CG6) (G.E)
OH (€6 |GL)
(EJF) H,O) (F.G)
EQ) H,G) (F.E)
(E,H) H,G) F,0)
(F,G) (C,G) | (GE)
(F.H) (C,6) G0
GH) [GQG) (E,0)

Table 4.1 transitions for each pair(p,q) on 0 and 1

Bjx

Cixl|x

Dix|xIx

E x|xlx
Flx|x|x X

G x| x|x X
H| x x[{x|x|x]|X
A|B|IC|DI|EI|F|G

Table 4.2 transitions for the transitions of table 3.1

182 & Finite Automata and Formal Languages

Again éonsider the pairs (p,q) which are not marked in the above table and see whether
the corresponding pairs (r, s) on 0 and 1 are marked as shown below:

0 | 1
P, | (rs) (r,s)
(AE) (B,H) (E,F)
AG) |BG) (F,E)
(B,H) (G,G) (C,C)
(D,F) (C,0) (G,G)
(E,G) H,G) (F,E)

Mark the pairs (A.G) and (E,G) with ‘x’ as shown below:

B|x

Clx|x

Dix|x|x

E X|xix.
Fix|x|x X
Glx |x|x|x{x]|x
H| x X|{x|x|x|x
A|[B|C EIF|G

D

Observe that the pairs (A,E), (B,H) and (D,F) are not at all marked and are considered to
be indistinguishable states. The other states namely C and G are distinguishable states.

4.11 Minimization of DFA

Once we have found the distinguishable and indistinguishable pairs we can easily
minimize the number of states of a DFA and accepting the same languagc as accepted by
original DFA. The algorithm to minimize the DFA is shown below:

Stepl: Find the dlstmgmshable and mdlstmgmshdb]e pairs using .the table-filling
algorithm (dlscusscd in previous section) _

Step2: Partition the states Q into various groups. These groups consist of
indistinguishable pairs obtained in previous step and individual distinguishable states.
The groups obtained are the states of minimized DFA. -

Step 3: The minimized DFA can be obtained as shown below. If [py, P2,---Pk] 1s one
group, then 8([p,pz,...px), @) = [r1, r2,...Im] is also a member of the group obtained earlier
and place an edge from the group [py,p2,...pk] to the group [ry, 13,...1m] and label the edge

Properties of Regular Languages & 183

with tihe symbol a. Follow this procedure for each group obtained in step 2 and for each a |
€X. '

Step 4 The start state of the minimized DFA is the group [pi,pz,...px] provided this
group contains the start state of given DFA. If the group [p1,pz,...pk]contains a final state

of givph DFA, then the group [pi,p2,...p] is final state of minimized DFA.

Example 4.15: Minimize the following DFA.,

>

States 0 1
- A B F
B G C
@ A C
D 1C G
E H F
F c G

G G E

H G C

| Step 1: Obtain the disﬁnguishable and indistinguishable states using the table-filling
algodthm (mark procedure). The table is shown below: (see the example 4.14).

B|x

Clx|x

Dix|x|x

E X|x]x
Fix|x]x X
Glx|x{x|x|x]|x
Hix| [x|x|x|x]|x
A|B|C|ID|E}F|G

Step2: The unmarked- pairs (A,E) (B,H) and (D,F) are indistinguishable and the states C
and G are distinguishable. So, the various groups that represent the states of minimized
DFA are:

(AE),(BH),C,(D,F),G

184 E Finite Automata and Formal Languages

Step 3: The minimized transition table is shown below:

z
States {0 -1
— (AE) { (B.H) (D.F)
BH) G C
© |am ¢
(DF) | C G
G G (A.E)

Note that the start state of minimized DFA is the group which has the start state of DFA
to be minimized and the group which consists of a final state of original DFA is the final
state of minimized DFA. The transition diagram of the minimized DFA is shown below:

Properties of Regular Languages & 185

Solutl;on First let us obtain the table for inequalities for the sates (distinguishable or
indistinguishable states) . This we can do by knowing the various states of glven DFA.
The states of the DFA are:

G 91 92 Q3 Qs

The péirs can be obtained as shown below:(This can be obtained by writing all the pairs
in the matrix form and take only the upper triangular matrix to avoid duplrcate elements
and cycles)

- (90, 91) (90, 92) (o, g3) (qo» Q4)
(91, 92) (q1, q3) (q1, q4)
(92. 93) (92, q4)

(93, 94
The above pairs can be represented in the tabular form as shown below and note that no

pairs are marked.

q
92
q3
g4

Qo 19 (G219

Step 1:
~ For each pair (p,q) where pe Qandq € Q, if pe Fand q ¢ F or vice versa then,
the pair (p, q) is distinguishable and mark the pair (p, q) [by putting say ‘x’ for the
" pair (p,q)]. This clearly indicates that one of the pair should be a final state and
~ the other should be a non final state. So, the various pairs which satisfy the above
criteria are all the pairs mvolvmg the final state q4 and are marked as shown

below
, o
9z
93
Qs | X X | x X
1 9o 1 Q1 {921 93
Step 2:

~ For each pair (p, q) and for each a € ¥ find 3(p, a) = r and 3(q, a) = s. If the pair
. (r, s) is already marked as distinguishable (Note: The distinguished states are
already marked as ‘x’ in the first step) then the pair (p, q) is also distinguishable
and mark it as say ‘x’. Repeat step 2 until no previously unmarked pairs are -
- marked

Now consider the pairs (p, q) which are not marked in step 1 and obtain the
corresponding pairs (r, s) on input symbols 0 and 1 as shown below:

186 E Finite Automata and Formal Languages

S a b
P | s) | (rs)
(90,91) | (91,92) | (93,94)
(90.92) | (91,91 | (93,94)°
(90.93) | (91,92) | (93,94
91,92) | (92.91) | (94.94)
(91.93) | (92.92) | (qs.94)
(92,93) | (q1,92) | (94,94)

Note: If the pairs (r, s) on a-and b are marked in step 1, the corresponding pair (p, q)
should be marked. For example, for the pair (qo,q;) on b is (g3,q4) and is marked as ‘x’ in
step 1. So, mark the pair (qo,q;) (shown using shading). On similar lines identify the pairs
(r, s) which are marked in step 1 (shown in bold phase) and take the corresponding palrs
(p.q) (shown in shading) and update the marking table as shown below.

q: X

92 | X

9 | X

qa | x X | x X
Qo 1 91 1921 g3

Again consider the pairs (p,q) which are not marked in the above table and see whether
the corresponding pairs (r, s) on a and b are marked as shown below:

d a b
(P,q | (rs) (r,s)
(91,92) |(92,91) | (94,94)
(91,93) | (92,92) | (qa,q4)
(92,93) | (91,92) | (q4,94)

. None of the unmarked pairs (r, s) are marked and final table is shown below:

&% x
9z | X
qs X ,
gs | X X § X X
Jo | 91 [G2 Qg3

Observe that the pairs (q1,92), (q1,93)and (q2,q3)are not at all marked and are considglfed to
be indistinguishable states. Note that the state q, is present in the pairs (q1,92), (q1,q3) and
the state q, is present in the pairs (q1,92), (q2,93)- So, the states q,, qa, q3 together forms a

Properties of Regular Languages = 187

grodp consisting of indistinguishablc states and can be represented as (q1, 92, q3)- So, the
indistinguishable groups are
' (q1, 92, q3)

and distinguishable states are
(qo) and (q4)

Step2: So, the various groups that represent the states of minimized DFA are:
(90) (q1, 92, 93).(q4)

Step 3: The minimized transition table is shown below. Note that the start state of original
DFA is the start state of minimized DFA and the group which consists of a final state of
original DFA is the final state of minimized DFA.

p
States | a b
—(q) | (q1.929) (91.92:93)
(91,92,93) (91,92:93) (q4)
(q4) (94) Q)

The transition diagram obtained after minimization is shown below:

188" H Finite Automata and Formal Languages

Note: It is clear from the above that the states q; and q4 are not reachable from the start
state and they can be removed. The resulting DFA after removing those states is shown
below: '

b _
First let us obtain the table for inequalities for the sates (distinguishable or
indistinguishable states) . This we can do by knowing the various states of given DFA.
The states of the DFA are:

do i q3 Gs
The pairs can be obtained as shown below:(This can be obtained by writing all the pairs

in the matrix form and take only the upper triangular matrix to avoid duplicate elements
and cycles) . ' -

(q()s QI) (QOv QB) (q(), QS)
Q1. 93) (q1, q5)
(g3, gs)

The above pairs can be represented in the tabular form as shown below and note that.no
pairs are marked. -

G

qs

Qo g1 [qs

Step 1:
For each pair (p, q) where p € Q and qe Q,if pe Fand q ¢ F or vice versa then,
the pair (p, q) is distinguishable and mark the pair (p, q) [by putting say ‘x’ for the
pair (p,q)]. This clearly indicates that one of the pair should be a final state and
the other should be a non final state. So, the various pairs which satisfy the abave
criteria are all the pairs involving the one of the final states q; or gs i.e, (qo, q3),
(9o, g5), (q1, g3) and (qy, qs) and are marked as shown below: ' ;

1
3 X X
QJs X X
Q{93

Properties of Regular Languages & 189

Step 2: , :
" For each pair (p, q) and for each a € X find 8(p, 2) = r and 8(q, a) =s. If the pair
(r, s) is already marked as distinguishable (Note: The distinguished states are
already marked as ‘x’ in the first step) then the pair (p, q) is also distinguishable
and mark it as say ‘x’. Repeat step 2 until no previously unmarked pairs are
marked ' :

Now consider the pairs (p, q) which are not marked in step 1 and obtain the
corresponding pairs (r, s) on input symbols a and b as shown below:

) a b
P | &8 | (rs)
(9o.9) | (q1.90) | (93.93)
(93.95) | (95.95) | (g5.95)

Noié: If the pairs (r, s) on a and b are marked in step 1, the corresponding pair (p, q)
shQuld be marked. But, the pairs (r, s) on a and b are not marked in the previous step and
the final table that provides the inequalities between the various states are shown below:

q .
g | x [X
Js X X
[Qo 1 |9

Observe that the pairs (qo,q1) and (gs,qs) are not at all marked and are considered to
be indistinguishable states.

Step 3: Finding the states of minimized DFA. It is clear from the table obtained in step 2
that the pairs (qo,q1) and (q3.qs) are indistinguishable and the various groups that
represent the states of minimized DFA are: :

(90 q1) (g3, gs)

Step 4: The minimized transition table is shown below. Note that the start state of
minimized DFA is the group which has the start state of DFA to be minimized and the
group which consists of a final state of original DFA is the final state of minimized DFA.

)
States a b

—(qo.q1) (qoq1) (93.95)

*(q39s) | (q3.95) (93,95)

190 B Finite Automata and Formal Languages

The transition diagram obtained after minimization is shown below:

4.12 Alternate procedure to minimize the states of DFA

Step 1:
Remove all unreachable states from the start state.
Step 2:
Construction of ITyg: Partition the states into two groups one consisting of final
states and the other consisting of. non-final states.
Step 3:
Construct ITyew from ITgq as shown in the figure 4.3.

Step 4:
If Mew !=Toiq
COP)’ IMpew to Igig
goto step 3
endif
Step 5: , v
Pick a representative from each group IT (IT can be ITgey or Iyyq as they are equal).
These representatives will be the states of reduced DFA. Obtain the transmons for
the reduced DFA as shown below: '
Let (p, q) (r, s)....(t, u) be the groups in II. In each group, we can select any
state as the representative. Suppose, p, s and u are the representatives. If 8(p,
a) = r is the transition then we can write 8(p, a) = s. This is because, even
though r is the transition; since it is not a representative we use its
representative i.e., s. Using this procedure construct the transmon tabld or
transition graph.

Procedure to construct ITpew from ITy4.

Copy Iga to IT.

foreachain) do

Properties of Regular Languages & 191

for each subgroup G in I1
Find 8(q, a) for each q in G on input symbol a.

Suppo.se Gi» 9j» Qk» g» Gm and gy are the states in subgroup G and p,
Pj» Px» P1» Pm and p, are the resulting states on an input symbol a.

If pi. Pj» Px» P1» Pm and p, all belongs to one specific subgroup in
o, then there is no need of partition.

If pi.pi belongs to one group, p;,pi belongs to another group and pm,b
Pa belongs to some other group, then partition the subgroup G into
groups consisting of (g, q1), (qj, qx) and (qm, qn)-

end for

Let the resulting subgroups be I1.

~ end for
Copy the final IT to ITew.

Fig. 4.3 Procedure to obtain ITyew from I'L,.d

Example 4.18: Minimize the following DFA.

|

Note: It is clear from the above that the states q2 and q4 are not BuRhable from the start
state and they can be removed. The resulting DFA after removing those states is shown
below:

192 & Finite Automata and Formal Languages

Step 2: :
The states of the DFA shown in figure above can be partitioned into two groups:
one consisting of non final states and the other group consisting of only: final
states as shown below:

Moia = (90, 1) (g3 gs) = (G, G2) - A
Step 3: ' .

Obtain ITpew from I1yq as shown below:

On input a:

Consider the group: (qo, q;):

The transitions from each state on input symbol a are:

8(go, 2) = qi All belong to group G, and so there is no need to
8(q1, a) = qo partition the group G, i

Consider the group: (g3, gs):

The transitions from each state on input symbol a are:

8(qx a) =qs } Both transitions enters into state qs and so there is no

&(gs, a) = gs need to partition the group G,.
So) n = (q09 QI) (Q3, q5) . . -
On input b:

Consider the group: (qo. q:):

The transitions from each state on input symbol b are:

8(qo, b) = g3 Both transitions enters into state qs and so there is no
8(qi. b) =qs need to partition the group G,.

Properties of Régular Languages & 193

Consider the group: (g3, gs):

The transitions from each state on input symbol b are:

3(qx b) =qs ‘Both transitions enters into state qs and so there is no
8(qs. b) =qs need to partition the group G,.

So, 1= (ge. q1) (@3, qs)

After copying IT to ITyew We have, Tyew = (qo, q1) (@3, q5) : -B

By c()mparing (A) and (B), it is very clear that I,y is equal to IToq. Since they are same,
the representatives from each group will be the states of reduced DFA. The
representatives are qo from the first group and q; from the second group. Therefore, the
states of reduced DFA are qo and q; and the transitions for these states can be obtained as
shown below: .

Consider state qq: '
&(qo.. a) = q;. But, q; belongs to group G, and the representative of this
group is qo. So, instead of q; we can write qo. Therefore,

8(qo, 2) = qo - ©
8o, b) = a3 | S (>)
- Consider state q3:

: 8(qs, a) = gs which is equal to q3 since q3 and gs are in the same group and q;3 is
- the representative of that group. So, M
8(qs3.) =qs - (B)
b(q;, b) = qs which is equal to g3;. Note that q3 and qs are in the same group and q3
- is the representative of that group. So,

8(‘]3’ b) =q3 . (F)

The tfansition table for the transitions obtained from (C) to (F) are shown in the table 4.3
and the reduced DFA using the transition graph is shown in figure 4.4. Here, q3 is the
final state since it is the final state in the given DFA.

194 & Finite Automata and Formal Languages

2
- O |a b -
—Q {Go 3

States

q3 qs

Table 4.3 Transition table

Fig. 4.4 Reduced DFA

Example 4.19: Minimize the following DFA.

Since all the states reachable from qo, there is no need to remove any state.

Step 1:

Step 2:
The states can be partitioned into two groups: one consisting of non final states
and the other group consisting of only final states as shown below:
o =(q0, 91,92, 43) (q8) =(G1, G2) A
Step 3: |
Since G, contain only one state, the group G, need not be considered. :
Obtain [T, from 1,4 as shown below: '

~ Properties of Regular Languages [195

On input a: :
Consider the group: (qe, Qi

The transitions from each state on input symbol « are:

6(3 a) =)

5(2?, a)= (ql: All the states obtained belong to
q, a) = q- group G; and so there is no need to
5(q: a) = qi partition the group G,

- So, Il = (qo, 91, 92, 93) (q4)
On input b:
Consider the group: (qo, g1. Q2. Q)

The transitions from each state on input symbol b are:

, b) =q; .
g((?l(:, b; = :ll: From the states q;, q: and g; there is a
&gz b)=qq transition to state 4, € G; and there is a
8(qs b) = qq transition from go to q3 € G,

So, partition the group G1 into two subgroups
(qo) (41,92,93)

So, IT=(qo) (91, 92, q3) (q4)

After copying IT to ITpew we have,
Mhew= (qo) (Q1, 92, 93) (q8) —B

Compare A and B i.c., Compafe Mo and Iyew. Since they are not same copy Iqew
to IT,q and repeat step 3 again.

Stéﬁ 3: '
Tlowa= (qo) (q1, G2, G3) (q4) = (G1, G2, G3) --C

Obtain IM,w from Iyg as shown below:

Since the group G, and Gj contain single state, those groups need not be
considered.

196 k2 Finite Automata and Formal Lénguages
On input a:
Consider the group: (q,, 9>, q3): ,

The transitions from each state on input symbol a are:

&qi.a)=q All the states obtained belong to
&q..) =q, group G; and so there is no need to
&qi a)=q: partition the group G,

So, IT=(qo) (q1, 92, q3) (Qs)

On input b:
Consider the group: (q), 92, q3):

The transitions from each state on input symbol b are:

- &(qi, b) =qq From the states q,, q; and q; there is a
5(q., b) =q, transition to state q4 € G, and so there
8(qs b)=qq -is no need to partition G,.

sov n = (qO) (Qh QZ,i QJ) (Q4)

After copying IT to ITpew, we have,

nw (90) (q1, 92, q3) (q4) --D
Compare C and D i.e., Compare I1gg and IMpew. Since My, = [y goto step S.

Step 5: :
[Low = Maew = 1= (qo) (q1> 2, G3) (q4) = (Gy, G2, G3)

Pick a representative from each group. The representatives are qo from the first
group, q; from the second group and q4 from the third group. These
representatives are the states of reduced DFA. Therefore, the states of reduced
DFA are |

qo, q1 and q4

and the transitions for these states can be obtained as shown below:

